期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
分布欧拉方程与分片函数的表示 被引量:2
1
作者 李岳生 《计算数学》 CSCD 北大核心 2006年第3期225-236,共12页
本文用分布(广义函数)的概念导出了刻画带内点约束的变分问题的解的分布欧拉方程,说明在这类问题中拉格朗日乘子法仍然是有效的。此外,利用基本解给出了分布欧拉方程的解的表示。进而给出了一元和多元广义变分样条函数的表示的一般方法。
关键词 分布欧拉方程 广义变分样条 变分法
原文传递
A 5th order monotonicity-preserving upwind compact difference scheme 被引量:6
2
作者 HE ZhiWei LI XinLiang +1 位作者 FU DeXun MA YanWen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第3期511-522,共12页
Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only ret... Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only retains the advantage of good resolution of high wave number but also avoids the Gibbs phenomenon of the original upwind compact difference scheme. Compared with the classical 5th order WENO difference scheme, the new difference scheme is simpler and small in diffusion and computation load. By employing the component-wise and characteristic-wise methods, two forms of the new difference scheme are proposed to solve the N-S/Euler equation. Through the Sod problem, the Shu-Osher problem and tbe two-dimensional Double Mach Reflection problem, numerical solutions have demonstrated this new scheme does have a good resolution of high wave number and a robust ability of capturing shock waves, leading to a conclusion that the new difference scheme may be used to simulate complex flows containing shock waves. 展开更多
关键词 upwind compact scheme monotonicity-preserving compressible flows shock capturing scheme
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部