研究了一类具有连续分布滞量含阻尼项的非线性双曲型偏微分方程~2u(x,t)/t^2+p(t)u(x,t)/t+A(x,t)u(x,t)+sum from i=1 to m_1( )∫_a^bB_i(x,t,τ)f_i(u(x,r_1(t,τ)))dm(τ)=C(t)Δu(x,t)+sum from j=1 to m_2( )∫_a^bD_j(t,...研究了一类具有连续分布滞量含阻尼项的非线性双曲型偏微分方程~2u(x,t)/t^2+p(t)u(x,t)/t+A(x,t)u(x,t)+sum from i=1 to m_1( )∫_a^bB_i(x,t,τ)f_i(u(x,r_1(t,τ)))dm(τ)=C(t)Δu(x,t)+sum from j=1 to m_2( )∫_a^bD_j(t,τ)Δu(x,r2(t,τ))dm(τ),获得了该方程在两类边值条件下解振动的充分条件.展开更多
文摘研究了一类具有连续分布滞量含阻尼项的非线性双曲型偏微分方程~2u(x,t)/t^2+p(t)u(x,t)/t+A(x,t)u(x,t)+sum from i=1 to m_1( )∫_a^bB_i(x,t,τ)f_i(u(x,r_1(t,τ)))dm(τ)=C(t)Δu(x,t)+sum from j=1 to m_2( )∫_a^bD_j(t,τ)Δu(x,r2(t,τ))dm(τ),获得了该方程在两类边值条件下解振动的充分条件.