再分析风场资料已广泛应用于我国舟山群岛海域可再生能源评估、海洋灾害预防决策以及港口运维和船舶运输等涉海发展领域,然而不同业务机构所提供的再分析数据在舟山近海的性能表现不一,严重阻碍了此类数据的有效应用。基于2018年全年单...再分析风场资料已广泛应用于我国舟山群岛海域可再生能源评估、海洋灾害预防决策以及港口运维和船舶运输等涉海发展领域,然而不同业务机构所提供的再分析数据在舟山近海的性能表现不一,严重阻碍了此类数据的有效应用。基于2018年全年单点浮标观测资料,综合评价了舟山群岛近海面(10 m)风场的长期变化趋势,并利用误差分析和风玫瑰图等统计工具对6种主流海表风场再分析资料,包括:ECMWF第五代全球大气再分析数据(the 5th generation ECMWF atmospheric reanalysis,ERA5)、NECP第二版全球高分辨率再分析数据(climate forecast system version 2,CFSv2)、美国宇航局物理海洋学分布存档中心的多卫星融合资料(cross-calibrated multi-platform,CCMP)、日本55年再分析数据(Japanese 55-year reanalysis,JRA-55)、第二版现代研究与应用回顾性分析数据(modern-era retrospective analysis for research and applications version 2,MERRA-2)和ECMWF哥白尼大气监测服务再分析数据(the Copernicus Atmosphere Monitoring Service,CAMS)在时间变化特征上进行了对比与评估。研究表明:在综合性能方面,ERA5对风场的再现能力最优,其次为JRA-55;在要素可信度方面,ERA5对风速的再现情况相对较优,而CFSv2的风向再现情况较好;风场产品在不同季节的模拟能力有所差异;不同风场产品在不同风速区间的重构能力也有所不同;在全年风向分布方面,各再分析资料都存在显著的东向偏差。研究结果为不同应用场景下风场资料的选取提供评估依据,并为进一步开发适用于舟山群岛近海的高精度长周期风场数据产品奠定基础。展开更多
As the highest and most extensive plateau on earth, the Tibetan Plateau has strong thermo- dynamic effect, which not only affects regional climate around the plateau but precipitation patterns of scattered meteorologi...As the highest and most extensive plateau on earth, the Tibetan Plateau has strong thermo- dynamic effect, which not only affects regional climate around the plateau but precipitation patterns of scattered meteorological also temperature and itself. However, due to stations, its spatial precipitation pattern and, especially, the mechanism behind are poorly understood. The availability of spatially consistent satellite-derived precipitation data makes it possible to get accurate precipitation pattern in the plateau, which could help quantitatively explore the effect and mechanism of mass elevation effect on precipitation pattern. This paper made full use of TMPA 3B43 V7 monthly precipitation data to track the trajectory of precipitation and identified four routes (east, southeast, south, west directions) along which moisture-laden air masses move into the plateau. We made the assumption that precipitation pattern is the result interplay of these four moisture- laden air masses transportation routes against the distances from moisture sources and the topographic barriers along the routes. To do so, we developed a multivariate linear regression model with the spatial distribution of annual mean precipitation as the dependent variable and the topographical barriers to these four moisture sources as independent variables. The result shows that our model could explain about 7o% of spatial variation of mean annual precipitation pattern in the plateau; the regression analysis also shows that the southeast moisture source (the Bay of Bengal) contributes the most (32.56%) to the rainfall pattern of the plateau; the east and the south sources have nearly the same contribution, 23.59% and 23.48%, respectively; while the west source contributes the least, only 2o.37%. The findings of this study can greatly improve our understanding of mass elevation effect on spatial precipitation pattern.展开更多
文摘再分析风场资料已广泛应用于我国舟山群岛海域可再生能源评估、海洋灾害预防决策以及港口运维和船舶运输等涉海发展领域,然而不同业务机构所提供的再分析数据在舟山近海的性能表现不一,严重阻碍了此类数据的有效应用。基于2018年全年单点浮标观测资料,综合评价了舟山群岛近海面(10 m)风场的长期变化趋势,并利用误差分析和风玫瑰图等统计工具对6种主流海表风场再分析资料,包括:ECMWF第五代全球大气再分析数据(the 5th generation ECMWF atmospheric reanalysis,ERA5)、NECP第二版全球高分辨率再分析数据(climate forecast system version 2,CFSv2)、美国宇航局物理海洋学分布存档中心的多卫星融合资料(cross-calibrated multi-platform,CCMP)、日本55年再分析数据(Japanese 55-year reanalysis,JRA-55)、第二版现代研究与应用回顾性分析数据(modern-era retrospective analysis for research and applications version 2,MERRA-2)和ECMWF哥白尼大气监测服务再分析数据(the Copernicus Atmosphere Monitoring Service,CAMS)在时间变化特征上进行了对比与评估。研究表明:在综合性能方面,ERA5对风场的再现能力最优,其次为JRA-55;在要素可信度方面,ERA5对风速的再现情况相对较优,而CFSv2的风向再现情况较好;风场产品在不同季节的模拟能力有所差异;不同风场产品在不同风速区间的重构能力也有所不同;在全年风向分布方面,各再分析资料都存在显著的东向偏差。研究结果为不同应用场景下风场资料的选取提供评估依据,并为进一步开发适用于舟山群岛近海的高精度长周期风场数据产品奠定基础。
基金funded by the National Natural Science Foundation of China(Grant Nos.41421001 and 41030528)
文摘As the highest and most extensive plateau on earth, the Tibetan Plateau has strong thermo- dynamic effect, which not only affects regional climate around the plateau but precipitation patterns of scattered meteorological also temperature and itself. However, due to stations, its spatial precipitation pattern and, especially, the mechanism behind are poorly understood. The availability of spatially consistent satellite-derived precipitation data makes it possible to get accurate precipitation pattern in the plateau, which could help quantitatively explore the effect and mechanism of mass elevation effect on precipitation pattern. This paper made full use of TMPA 3B43 V7 monthly precipitation data to track the trajectory of precipitation and identified four routes (east, southeast, south, west directions) along which moisture-laden air masses move into the plateau. We made the assumption that precipitation pattern is the result interplay of these four moisture- laden air masses transportation routes against the distances from moisture sources and the topographic barriers along the routes. To do so, we developed a multivariate linear regression model with the spatial distribution of annual mean precipitation as the dependent variable and the topographical barriers to these four moisture sources as independent variables. The result shows that our model could explain about 7o% of spatial variation of mean annual precipitation pattern in the plateau; the regression analysis also shows that the southeast moisture source (the Bay of Bengal) contributes the most (32.56%) to the rainfall pattern of the plateau; the east and the south sources have nearly the same contribution, 23.59% and 23.48%, respectively; while the west source contributes the least, only 2o.37%. The findings of this study can greatly improve our understanding of mass elevation effect on spatial precipitation pattern.