In this paper, derivation of analytical expressions for overlap integrals with the same and different screening parameters of Slater type orbitals (STOs) via the Fourier-transform method is presented. Consequently, it...In this paper, derivation of analytical expressions for overlap integrals with the same and different screening parameters of Slater type orbitals (STOs) via the Fourier-transform method is presented. Consequently, it is relatively easy to express the Fourier integral representations of the overlap integrals with same and different screening parameters mentioned as finite sums of Gegenbauer, Gaunt, binomial coefficients, and STOs.展开更多
In this paper,the image space analysis (for short,ISA) is employed to investigate variational in- equalities (for short,VI) with cone constraints.Linear separation for VI with cone constraints is characterized by usin...In this paper,the image space analysis (for short,ISA) is employed to investigate variational in- equalities (for short,VI) with cone constraints.Linear separation for VI with cone constraints is characterized by using the normal cone to a regularization of the image,and saddle points of the generalized Lagrangian func- tion.Lagrangian-type necessary and sufficient optimality conditions for VI with cone constraints are presented by using a separation theorem.Gap functions and weak sharpness for VI with cone constraints are also investi- gated.Finally,the obtained results are applied to standard and time-dependent traffic equilibria introduced by Daniele,Maugeri and Oettli.展开更多
文摘In this paper, derivation of analytical expressions for overlap integrals with the same and different screening parameters of Slater type orbitals (STOs) via the Fourier-transform method is presented. Consequently, it is relatively easy to express the Fourier integral representations of the overlap integrals with same and different screening parameters mentioned as finite sums of Gegenbauer, Gaunt, binomial coefficients, and STOs.
基金supported by National Natural Science Foundation of China (Grants Nos. 60804065, 70831005)the Key Project of Chinese Ministry of Education (Grant No. 211163)Sichuan Youth Science and Technology Foundation and the Research Foundation of China West Normal University (Grant No. 08B075)
文摘In this paper,the image space analysis (for short,ISA) is employed to investigate variational in- equalities (for short,VI) with cone constraints.Linear separation for VI with cone constraints is characterized by using the normal cone to a regularization of the image,and saddle points of the generalized Lagrangian func- tion.Lagrangian-type necessary and sufficient optimality conditions for VI with cone constraints are presented by using a separation theorem.Gap functions and weak sharpness for VI with cone constraints are also investi- gated.Finally,the obtained results are applied to standard and time-dependent traffic equilibria introduced by Daniele,Maugeri and Oettli.