Debris flows consist of grains of various sizes ranging from 10^(-6) m ~1 m. Field observations in the Jiangjia Gully (JJG) and other sites throughout China indicate that the grain size distribution of sediment in de...Debris flows consist of grains of various sizes ranging from 10^(-6) m ~1 m. Field observations in the Jiangjia Gully (JJG) and other sites throughout China indicate that the grain size distribution of sediment in debris flows can be characterized by an exponential function fit to the cumulative distribution. The exponent value for the function varies by location and may be useful in distinguishing between debris flows from different valleys. For example, minimum values and ranges of the exponent are associated with the high frequency of debris flows in the JJG. Furthermore, the distribution presents piecewise fractality (i.e. scaling laws hold in various ranges of the grain size) and we propose that the fractal structure determines the matrix and that the fractal dimension plays a crucial role in material exchange between a debris flow and the substrate it flows over. Finally, the empirical data support an exponential relation between grain composition and non-dimensional shear stress for the critical state of the channel. Overall we propose a material-determinism approach to studying debris flows which contrasts with the enviro-determinism that has dominated much recent work in this field.展开更多
The size and the shape of non-reversal random-walking polymerchains near an impenetrable, non- interacting flat surface areinvestigated by means of Monte Carlo simulation on the simple cubiclattice. It was found that ...The size and the shape of non-reversal random-walking polymerchains near an impenetrable, non- interacting flat surface areinvestigated by means of Monte Carlo simulation on the simple cubiclattice. It was found that both size and shape are dependent on thenormal-to-surface distance z_0 of the first segment of chain. We findthat the size and shape of chains, characterized by mean squareradius of gyration and mean asphericity parameter respectively, show similar dependence on distance z_0.展开更多
基金This work is supported by National Science Foundation Grant No. 40671025 and 40501008;also by the Knowledge Innovation Project of Chinese Academy of Sciences, KZCX3-SW-352;the Frontier Project of Institute of Mountain Hazard and Environment, CAS, No. C3-200307. Special gratitude goes to Dr. He Yiping for field data for the JJG debris flow.
文摘Debris flows consist of grains of various sizes ranging from 10^(-6) m ~1 m. Field observations in the Jiangjia Gully (JJG) and other sites throughout China indicate that the grain size distribution of sediment in debris flows can be characterized by an exponential function fit to the cumulative distribution. The exponent value for the function varies by location and may be useful in distinguishing between debris flows from different valleys. For example, minimum values and ranges of the exponent are associated with the high frequency of debris flows in the JJG. Furthermore, the distribution presents piecewise fractality (i.e. scaling laws hold in various ranges of the grain size) and we propose that the fractal structure determines the matrix and that the fractal dimension plays a crucial role in material exchange between a debris flow and the substrate it flows over. Finally, the empirical data support an exponential relation between grain composition and non-dimensional shear stress for the critical state of the channel. Overall we propose a material-determinism approach to studying debris flows which contrasts with the enviro-determinism that has dominated much recent work in this field.
基金Supported by the National Natural Science Foundation of China (No. 20076038).
文摘The size and the shape of non-reversal random-walking polymerchains near an impenetrable, non- interacting flat surface areinvestigated by means of Monte Carlo simulation on the simple cubiclattice. It was found that both size and shape are dependent on thenormal-to-surface distance z_0 of the first segment of chain. We findthat the size and shape of chains, characterized by mean squareradius of gyration and mean asphericity parameter respectively, show similar dependence on distance z_0.