Molecular dynamics(MD) simulations were carried out to study the fracture behaviors of several symmetric tilt grain boundaries in γ-Ti Al bicrystals with <110> misorientation axes. Tensile deformation along dir...Molecular dynamics(MD) simulations were carried out to study the fracture behaviors of several symmetric tilt grain boundaries in γ-Ti Al bicrystals with <110> misorientation axes. Tensile deformation along direction perpendicular to grain boundary was simulated under various strain rates and temperatures. The results indicate that the relative orientation of the grains and the presence of certain atom units are two critical factors of the interface structure affecting the stress required for dislocation nucleation. Dislocations nucleate and extend at or near the symmetric tilt grain boundaries during the tensile deformation of Σ3(111) 109.5°, Σ9(221) 141.1° and Σ27(552) 148.4° interfaces. For Σ27(115) 31.6° and Σ11(113) 50.5° interfaces, the interfaces fractured directly in a cleavage manner due to no dislocation emitted from the boundary. The tensile fracture mechanisms of the bicrystals are that micro-cracks nucleate at the grain boundary and propagate along the interface. The variance of crack propagation is whether there is accommodation of plastic region at the crack tips.展开更多
We perform molecular dynamics simulations for water confined between two smooth hydrophobic walls and observe two crystalline structures with one being first reported. Both of these structures obey the ice rule. The n...We perform molecular dynamics simulations for water confined between two smooth hydrophobic walls and observe two crystalline structures with one being first reported. Both of these structures obey the ice rule. The novel ice phase is a flat hexagonal-rhombic trilayer ice, obtained under 1 GPa load at wall separation of 1.0 nm. In this structure, the water molecules in the two layers next to one of the walls (outer layers) and in the middle layer form hexagonal rings and rhombic rings, respectively. For a molecule in the outer layers, three of its four hydrogen bonds are in the same layer, and the other one hydrogen bond connects to the middle layer. For a molecule in the middle layer, only two of its four hydrogen-bonds are located in the same layer, and the other two connect to two different outer layers. Despite their different motifs, the area densities of the three layers are almost equal. The other structure is a flat hexagonal bilayer ice produced at wall separation of 0.8 nm under lateral pressure of 100 MPa, analogous to a system demonstrated by Koga et al [Phys. Rev. Lett. 79, 5262 (1997)]. Both first-order and continuous phase transitions take place in these simulations.展开更多
In this work,the solidification of liquid iron with or without external magnetic field was investigated by using two molecular dynamics methods,namely direct cooling and two-phase simulation.The influence of external ...In this work,the solidification of liquid iron with or without external magnetic field was investigated by using two molecular dynamics methods,namely direct cooling and two-phase simulation.The influence of external magnetic field on the solidification is characterized by the critical temperature and radial distribution functions.Our computational results show that under external magnetic field,the solidification point tends to decrease significantly.By further analyzing the diffusion coefficients and viscosity,we attribute the effect to the stronger fluctuation of liquid iron atoms driven by the external magnetic field.展开更多
The effects of tensile temperatures ranging from 100 K to 900 K on the phase transition of hexagonal close-packed(HCP)zirconium were investigated by molecular dynamics simulations,which were combined with experimental...The effects of tensile temperatures ranging from 100 K to 900 K on the phase transition of hexagonal close-packed(HCP)zirconium were investigated by molecular dynamics simulations,which were combined with experimental observation under high resolution transmission electron microscopy.The results show that externally applied loading first induced the HCP to body-centered cubic(BCC)phase transition in the Pitsch-Schrader(PS)orientation relationship(OR).Then,the face-centered cubic(FCC)structure transformed from the BCC phase in the Bain path.However,the HCP-to-BCC transition was incomplete at 100 K and 300 K,resulting in a prismatic-type OR between the FCC and original HCP phase.Additionally,at the temperature ranging from 100 K to 600 K,the inverse BCC-to-HCP transition occurred locally following other variants of the PS OR,resulting in a basal-type relation between the newly generated HCP and FCC phases.A higher tensile temperature promoted the amount of FCC phase transforming into the BCC phase when the strain exceeded 45%.Besides,the crystal stretched at lower temperatures exhibits relatively higher strength but by the compromise of plasticity.This study reveals the deformation mechanisms in HCP-Zr at different temperatures,which may provide a better understanding of the deformation mechanism of zirconium alloys under different application environments.展开更多
Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their c...Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their coarse-grained counterparts under normal conditions. Experimental evidences are introduced on non-equilibrium grain boundaries, deformation twinnings and partial dislocation emissions from grain boundaries. Some of these features can be explained by the results reported from molecular-dynamics simulations of pure FCC metals. Special emphasis is laid on the recent observations of high density hexagonal and rhombic shaped nanostructures with an average size of 3 nm in the A1-Mg alloys processed by high pressure torsion. A possible formation process of these nanostructures is proposed based on molecular-dynamics simulations.展开更多
Ring polymer molecular dynamics(RPMD)calculations for the C(^(1)D)+H_(2)reaction are performed on the Zhang-Ma-Bian ab initio potential energy surfaces(PESs)recently constructed by our group,which are unique in very g...Ring polymer molecular dynamics(RPMD)calculations for the C(^(1)D)+H_(2)reaction are performed on the Zhang-Ma-Bian ab initio potential energy surfaces(PESs)recently constructed by our group,which are unique in very good descriptions of the regions around conical intersections and of van der Waals(vdW)interactions.The calculated reaction thermal rate coefficients are in very good agreement with the latest experimental results.The rate coefficients obtained from the ground˜a^(1)A′ZMB-a PES are much larger than those from the previous RKHS PES,which can be attributed to that the vdW saddles on our PESs have very different dynamical effects from the vdW wells on the previous PESs,indicating that the RPMD approach is able to include dynamical effects of the topological structures caused by vdW interactions.The importance of the excited˜b^(1)A′′ZMB-b PES and quantum effects in the title reaction is also underscored.展开更多
The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to charact...The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to characterize the interaction between atoms of the magnesium alloy specimen with only a void.The void growth and crystal failure processes for hexagonal close-packed(hcp)structure were observed.The calculating results reveal that the deformation mechanism near a void in magnesium alloy is a complex process.The passivation around the void,dislocation emission,and coalescence of the void and micro-cavities lead to rapid void growth.展开更多
To describe the physical reality, there are two ways of constructing the dynamical equation of field, differential formalism and integral formalism. The importance of this fact is firstly emphasized by Yang in case of...To describe the physical reality, there are two ways of constructing the dynamical equation of field, differential formalism and integral formalism. The importance of this fact is firstly emphasized by Yang in case of gauge field [Phys. Rev. Lett. 33 (1974) 44fi], where the fact has given rise to a deeper understanding for Aharonov-Bohm phase and magnetic monopole [Phys. Rev. D 12 (1975) 3846]. In this paper we shall point out that such a fact also holds in general wave function of matter, it may give rise to a deeper understanding for Berry phase. Most importantly, we shall prove a point that, for general wave function of matter, in the adiabatic limit, there is an intrinsic difference between its integral formalism and differential formalism. It is neglect of this difference that leads to an inconsistency of quantum adiabatic theorem pointed out by Marzlin and Sanders [Phys. Rev. Lett. 93 (2004) 160408]. It has been widely accepted that there is no physical difference of using differential operator or integral operator to construct the dynamical equation of field. Nevertheless, our study shows that the Schroedinger differential equation (i.e., differential formalism for wave function) shall lead to vanishing Berry phase and that the Schroedinger integral equation (i.e., integral formalism for wave function), in the adiabatic limit, can satisfactorily give the Berry phase. Therefore, we reach a conclusion: There are two ways of describing physical reality, differential formalism and integral formalism; but the integral formalism is a unique way of complete description.展开更多
Following deformation, thermally induced shape memory polymers(SMPs) have the ability to recover their original shape with a change in temperature. In this work, the thermomechanical properties and shape memory behavi...Following deformation, thermally induced shape memory polymers(SMPs) have the ability to recover their original shape with a change in temperature. In this work, the thermomechanical properties and shape memory behaviors of three types of epoxy SMPs with varying curing agent contents were investigated using a molecular dynamics(MD) method. The mechanical properties under uniaxial tension at different temperatures were obtained, and the simulation results compared reasonably with experimental data. In addition, in a thermomechanical cycle, ideal shape memory effects for the three types of SMPs were revealed through the shape frozen and shape recovery responses at low and high temperatures, respectively, indicating that the recovery time is strongly influenced by the ratio of E-51 to 4,4'-Methylenedianiline.展开更多
Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamic...Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamics technique. A new criterion for assessing the preferred deformation mode-slip or twin propagation--of nanowires as a function of nanowire diameter is presented. The results demonstrate the size-dependent transition, from superplastic deformation mediated by twin propagation to the rupture by localized slips in deformed region as the nanowire diameter decreases. Moreover, the criterion was successfully applied to explain the superplastic deformation of Cu nanowires.展开更多
Based on the short-range order,it is found that the abundance of the P-centered P-transition-metal clusters are the common feature among the liquid Pd-Cu-Ni-P alloys,and hence this feature alone could not uncover the ...Based on the short-range order,it is found that the abundance of the P-centered P-transition-metal clusters are the common feature among the liquid Pd-Cu-Ni-P alloys,and hence this feature alone could not uncover the underlying mechanisms of the variation of glass forming ability among the liquid alloys.For the so called similar elements such as Cu and Ni,their behaviors are significantly different when interacting with Pd or P atoms.Cu has weak bonding with both Pd and P while Ni has very strong bonding with P but nearly no bonding with Pd.The different bonding characters thus underlie the phenomenon that in the best glass formers the ratio of the two similar elements often deviates from 1:1.Only if the parameters of chemical short-range order of Cu and Ni around P become closest to each other the best glass forming ability is reached.It is also illustrated that the calculated dynamic properties are very helpful to locate the composition of the best glass former.展开更多
基金Project(51201147)supported by the National Natural Science Foundation of ChinaProject(14JJ6016)supported by the Natural Science Foundation of Hunan Province,ChinaProject(INFO-115-B01)supported by the Informalization Construction Project of Chinese Academy of Sciences,China
文摘Molecular dynamics(MD) simulations were carried out to study the fracture behaviors of several symmetric tilt grain boundaries in γ-Ti Al bicrystals with <110> misorientation axes. Tensile deformation along direction perpendicular to grain boundary was simulated under various strain rates and temperatures. The results indicate that the relative orientation of the grains and the presence of certain atom units are two critical factors of the interface structure affecting the stress required for dislocation nucleation. Dislocations nucleate and extend at or near the symmetric tilt grain boundaries during the tensile deformation of Σ3(111) 109.5°, Σ9(221) 141.1° and Σ27(552) 148.4° interfaces. For Σ27(115) 31.6° and Σ11(113) 50.5° interfaces, the interfaces fractured directly in a cleavage manner due to no dislocation emitted from the boundary. The tensile fracture mechanisms of the bicrystals are that micro-cracks nucleate at the grain boundary and propagate along the interface. The variance of crack propagation is whether there is accommodation of plastic region at the crack tips.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20603032, No.20733004, No.21121003, No.91021004, and No.20933006), by the Ministry of Science and Technology of China (No.2011CB921400), the National Excellent DoctoralDissertation of China (No.200736), the Fundamental Research Funds for the Central Universities (No.WK2340000006, No.WK2060140005, and No.WK2060030012), and the USTC-HP HPC Project.
文摘We perform molecular dynamics simulations for water confined between two smooth hydrophobic walls and observe two crystalline structures with one being first reported. Both of these structures obey the ice rule. The novel ice phase is a flat hexagonal-rhombic trilayer ice, obtained under 1 GPa load at wall separation of 1.0 nm. In this structure, the water molecules in the two layers next to one of the walls (outer layers) and in the middle layer form hexagonal rings and rhombic rings, respectively. For a molecule in the outer layers, three of its four hydrogen bonds are in the same layer, and the other one hydrogen bond connects to the middle layer. For a molecule in the middle layer, only two of its four hydrogen-bonds are located in the same layer, and the other two connect to two different outer layers. Despite their different motifs, the area densities of the three layers are almost equal. The other structure is a flat hexagonal bilayer ice produced at wall separation of 0.8 nm under lateral pressure of 100 MPa, analogous to a system demonstrated by Koga et al [Phys. Rev. Lett. 79, 5262 (1997)]. Both first-order and continuous phase transitions take place in these simulations.
基金funded by the National Natural Science Foundation of China(No.22173057 for Yongle Li and No.51690164 for Xi Li)the Foundation of Shanghai Science and Technology Commission(No.21JC1402700 and No.21DZ2304900 for Yongle Li)supported by Open Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University。
文摘In this work,the solidification of liquid iron with or without external magnetic field was investigated by using two molecular dynamics methods,namely direct cooling and two-phase simulation.The influence of external magnetic field on the solidification is characterized by the critical temperature and radial distribution functions.Our computational results show that under external magnetic field,the solidification point tends to decrease significantly.By further analyzing the diffusion coefficients and viscosity,we attribute the effect to the stronger fluctuation of liquid iron atoms driven by the external magnetic field.
基金Projects(51901248,51828102)supported by the National Natural Science Foundation of ChinaProject(2018JJ3649)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2019CX026)supported by the Innovation-driven Plan in Central South University,China。
文摘The effects of tensile temperatures ranging from 100 K to 900 K on the phase transition of hexagonal close-packed(HCP)zirconium were investigated by molecular dynamics simulations,which were combined with experimental observation under high resolution transmission electron microscopy.The results show that externally applied loading first induced the HCP to body-centered cubic(BCC)phase transition in the Pitsch-Schrader(PS)orientation relationship(OR).Then,the face-centered cubic(FCC)structure transformed from the BCC phase in the Bain path.However,the HCP-to-BCC transition was incomplete at 100 K and 300 K,resulting in a prismatic-type OR between the FCC and original HCP phase.Additionally,at the temperature ranging from 100 K to 600 K,the inverse BCC-to-HCP transition occurred locally following other variants of the PS OR,resulting in a basal-type relation between the newly generated HCP and FCC phases.A higher tensile temperature promoted the amount of FCC phase transforming into the BCC phase when the strain exceeded 45%.Besides,the crystal stretched at lower temperatures exhibits relatively higher strength but by the compromise of plasticity.This study reveals the deformation mechanisms in HCP-Zr at different temperatures,which may provide a better understanding of the deformation mechanism of zirconium alloys under different application environments.
基金Project(50971087) supported by the National Natural Science Foundation of ChinaProject supported by the Research Council of Norway under the Strategic University Program on Light Metals Technology Projects(67692, 71594) supported by the Hungarian National Science Foundation
文摘Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their coarse-grained counterparts under normal conditions. Experimental evidences are introduced on non-equilibrium grain boundaries, deformation twinnings and partial dislocation emissions from grain boundaries. Some of these features can be explained by the results reported from molecular-dynamics simulations of pure FCC metals. Special emphasis is laid on the recent observations of high density hexagonal and rhombic shaped nanostructures with an average size of 3 nm in the A1-Mg alloys processed by high pressure torsion. A possible formation process of these nanostructures is proposed based on molecular-dynamics simulations.
基金supported by the National Natural Science Foundation of China(No.21773251 and No.21973098)the Youth Innovation Promotion Association CAS(No.2018045)the Beijing National Laboratory for Molecular Sciences。
文摘Ring polymer molecular dynamics(RPMD)calculations for the C(^(1)D)+H_(2)reaction are performed on the Zhang-Ma-Bian ab initio potential energy surfaces(PESs)recently constructed by our group,which are unique in very good descriptions of the regions around conical intersections and of van der Waals(vdW)interactions.The calculated reaction thermal rate coefficients are in very good agreement with the latest experimental results.The rate coefficients obtained from the ground˜a^(1)A′ZMB-a PES are much larger than those from the previous RKHS PES,which can be attributed to that the vdW saddles on our PESs have very different dynamical effects from the vdW wells on the previous PESs,indicating that the RPMD approach is able to include dynamical effects of the topological structures caused by vdW interactions.The importance of the excited˜b^(1)A′′ZMB-b PES and quantum effects in the title reaction is also underscored.
基金Project(10776023)supported by the National Natural Science Foundation of China
文摘The plastic deformation processes of magnesium alloys near a void at atomic scale level were examined through molecular dynamics(MD)simulation.The modified embedded atom method(MEAM)potentials were employed to characterize the interaction between atoms of the magnesium alloy specimen with only a void.The void growth and crystal failure processes for hexagonal close-packed(hcp)structure were observed.The calculating results reveal that the deformation mechanism near a void in magnesium alloy is a complex process.The passivation around the void,dislocation emission,and coalescence of the void and micro-cavities lead to rapid void growth.
文摘To describe the physical reality, there are two ways of constructing the dynamical equation of field, differential formalism and integral formalism. The importance of this fact is firstly emphasized by Yang in case of gauge field [Phys. Rev. Lett. 33 (1974) 44fi], where the fact has given rise to a deeper understanding for Aharonov-Bohm phase and magnetic monopole [Phys. Rev. D 12 (1975) 3846]. In this paper we shall point out that such a fact also holds in general wave function of matter, it may give rise to a deeper understanding for Berry phase. Most importantly, we shall prove a point that, for general wave function of matter, in the adiabatic limit, there is an intrinsic difference between its integral formalism and differential formalism. It is neglect of this difference that leads to an inconsistency of quantum adiabatic theorem pointed out by Marzlin and Sanders [Phys. Rev. Lett. 93 (2004) 160408]. It has been widely accepted that there is no physical difference of using differential operator or integral operator to construct the dynamical equation of field. Nevertheless, our study shows that the Schroedinger differential equation (i.e., differential formalism for wave function) shall lead to vanishing Berry phase and that the Schroedinger integral equation (i.e., integral formalism for wave function), in the adiabatic limit, can satisfactorily give the Berry phase. Therefore, we reach a conclusion: There are two ways of describing physical reality, differential formalism and integral formalism; but the integral formalism is a unique way of complete description.
基金the National Natural Science Foundation of China(Grant Nos.11272044 and 11023001)
文摘Following deformation, thermally induced shape memory polymers(SMPs) have the ability to recover their original shape with a change in temperature. In this work, the thermomechanical properties and shape memory behaviors of three types of epoxy SMPs with varying curing agent contents were investigated using a molecular dynamics(MD) method. The mechanical properties under uniaxial tension at different temperatures were obtained, and the simulation results compared reasonably with experimental data. In addition, in a thermomechanical cycle, ideal shape memory effects for the three types of SMPs were revealed through the shape frozen and shape recovery responses at low and high temperatures, respectively, indicating that the recovery time is strongly influenced by the ratio of E-51 to 4,4'-Methylenedianiline.
文摘Inspired by the controversy over tensile deformation modes of single-crystalline 〈110〉/{111} Au nanowires, we investigated the dependency of the deformation mode on diameters of nanowires using the molecular dynamics technique. A new criterion for assessing the preferred deformation mode-slip or twin propagation--of nanowires as a function of nanowire diameter is presented. The results demonstrate the size-dependent transition, from superplastic deformation mediated by twin propagation to the rupture by localized slips in deformed region as the nanowire diameter decreases. Moreover, the criterion was successfully applied to explain the superplastic deformation of Cu nanowires.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50971082 and 50831003)
文摘Based on the short-range order,it is found that the abundance of the P-centered P-transition-metal clusters are the common feature among the liquid Pd-Cu-Ni-P alloys,and hence this feature alone could not uncover the underlying mechanisms of the variation of glass forming ability among the liquid alloys.For the so called similar elements such as Cu and Ni,their behaviors are significantly different when interacting with Pd or P atoms.Cu has weak bonding with both Pd and P while Ni has very strong bonding with P but nearly no bonding with Pd.The different bonding characters thus underlie the phenomenon that in the best glass formers the ratio of the two similar elements often deviates from 1:1.Only if the parameters of chemical short-range order of Cu and Ni around P become closest to each other the best glass forming ability is reached.It is also illustrated that the calculated dynamic properties are very helpful to locate the composition of the best glass former.