For the open question 'If two nonconstant meromorphic functions share three values IM and share a fourth value CM, then do the functions necessarily share all four values CM?', the author studies the case when...For the open question 'If two nonconstant meromorphic functions share three values IM and share a fourth value CM, then do the functions necessarily share all four values CM?', the author studies the case when four values are shared IM and their counting functions satisfy an additional condition. The author obtains some results which answer this question partially.展开更多
The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 ...The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 or δ 2(0,f)+δ 2(0,g)+δ 2(∞,f)+δ 2(∞,g)=3, and E(1,f)=E(1,g) then f(z),g(z) must be one of five cases.展开更多
Let F be a family of meromorphic functions on the unit disc A. Let a be a non-zero finite value and k be a positive integer. If for every f ∈ F,(i) f and f(k) share α ;(ii) the zeros of f(z) are of multiplicity ≥k ...Let F be a family of meromorphic functions on the unit disc A. Let a be a non-zero finite value and k be a positive integer. If for every f ∈ F,(i) f and f(k) share α ;(ii) the zeros of f(z) are of multiplicity ≥k + 1 , then F is normal on △.We also proved corresponding results on normal functions and a uniqueness theorem of entire functions .展开更多
文摘For the open question 'If two nonconstant meromorphic functions share three values IM and share a fourth value CM, then do the functions necessarily share all four values CM?', the author studies the case when four values are shared IM and their counting functions satisfy an additional condition. The author obtains some results which answer this question partially.
文摘The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 or δ 2(0,f)+δ 2(0,g)+δ 2(∞,f)+δ 2(∞,g)=3, and E(1,f)=E(1,g) then f(z),g(z) must be one of five cases.
文摘Let F be a family of meromorphic functions on the unit disc A. Let a be a non-zero finite value and k be a positive integer. If for every f ∈ F,(i) f and f(k) share α ;(ii) the zeros of f(z) are of multiplicity ≥k + 1 , then F is normal on △.We also proved corresponding results on normal functions and a uniqueness theorem of entire functions .