期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于逐幸存路径处理的测试用例集约简技术
1
作者 霍婷婷 孙强 +1 位作者 丁蕊 夏春艳 《计算机应用研究》 CSCD 北大核心 2023年第1期229-233,共5页
针对基于智能算法的测试用例集约简技术存在的容易陷入局部收敛、过早熟等问题,提出一种基于逐幸存路径处理的测试用例集约简算法,该算法运用逐幸存路径处理算法的顺序网格搜索思路,将测试用例集进行二进制编码,使其构成顺序网格搜索的... 针对基于智能算法的测试用例集约简技术存在的容易陷入局部收敛、过早熟等问题,提出一种基于逐幸存路径处理的测试用例集约简算法,该算法运用逐幸存路径处理算法的顺序网格搜索思路,将测试用例集进行二进制编码,使其构成顺序网格搜索的状态空间,在状态转移阶段将代码覆盖率和测试用例有效执行时间作为分支度量,进而选择分支重量最大的路径作为幸存路径,从而剔除冗余状态,完成测试用例集的约简。实验结果表明,在相同的实验环境下,与其他算法相比,该算法在具有较高冗余率的同时也保证了较高的检错率,在一定程度上降低了软件测试的复杂度,从而提高了软件测试的效率。 展开更多
关键词 测试用例集约简 逐幸存路径处理 分支重量 代码覆盖率 冗余率 检错率
下载PDF
Multi-scale prediction of MEMS gyroscope random drift based on EMD-SVR
2
作者 HE Jia-ning ZHONG Ying LI Xing-fei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第3期290-296,共7页
To improve the prediction accuracy of micro-electromechanical systems(MEMS)gyroscope random drift series,a multi-scale prediction model based on empirical mode decomposition(EMD)and support vector regression(SVR)is pr... To improve the prediction accuracy of micro-electromechanical systems(MEMS)gyroscope random drift series,a multi-scale prediction model based on empirical mode decomposition(EMD)and support vector regression(SVR)is proposed.Firstly,EMD is employed to decompose the raw drift series into a finite number of intrinsic mode functions(IMFs)with the frequency descending successively.Secondly,according to the time-frequency characteristic of each IMF,the corresponding SVR prediction model is established based on phase space reconstruction.Finally,the prediction results are obtained by adding up the prediction results of all IMFs with equal weight.The experimental results demonstrate the validity of the proposed model in random drift prediction of MEMS gyroscope.Compared with a single SVR model,the proposed model has higher prediction precision,which can provide the basis for drift error compensation of MEMS gyroscope. 展开更多
关键词 random drift MEMS gyroscope empirical mode decomposition(EMD) support vector regression(SVR) phase space reconstruction multi-scale prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部