Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussio...Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussion widely in the fields of laboratory, space, and astrophysical plasmas because of its potential importance in plasma particle energization. Some satellite observations show that the number density ratio of the oxygen ions to the ambient plasma is 30% similar to 50%, sometimes, even as high as 80%. In this paper, effects of heavy ion species on KAWs are studied in a low-beta plasma. The results show that heavy ions not only considerably reduce the propagation speed of KAWs, but also remarkably influence the parallel component of perturbed electric field of KAWs (to the ambient magnetic field). The ratio of parallel to perpendicular components of perturbed field decreases (or increases) with the heavy ion abundance for KAWs dominated by the electron inertial length (or by ion acoustic gyroradius). In particular, the resonant condition of KAWs with thermal electrons is modified by the heavy ion species.展开更多
Recently, we have found a reversible transition between the dispersion and aggregation states of solute molecules in aqueous solutions confined in nanoscale geometry, where solutes exhibit distinct behavior in a new a...Recently, we have found a reversible transition between the dispersion and aggregation states of solute molecules in aqueous solutions confined in nanoscale geometry, where solutes exhibit distinct behavior in a new association state from that in the dispersion and aggregation states observed usually in macroscopic systems. However, it remains unknown whether this new association state of solute molecules found in nanoconfined systems would vanish with the system size increasing and approaching the macroscopic scale. Here, we achieve the phase diagram of solute association states by making the analyses of Gibbs free energy of solutes in nanoconfined aqueous solutions in detail. In the phase diagram, we observe a closed regime with a finite system size of nanoconfined aqueous solutions and a solute concentration range, only in which there exists the new association state of solutes with the reversible transition between the aggregation and dispersion states, and there indeed exists an upper limit of the system size for the new association state, around several tens nanometers. These findings regarding the intimate connection between the system size and the solute association behavior provides the comprehensive understanding of the association dynamics of solutes in nanoconfined environment.展开更多
文摘Kinetic Alfven Wave (KAW) is one of the low-frequency electromagnetic fluctuations that are identified extensively in space plasmas by in situ observations of satellites and has been an interesting topic for discussion widely in the fields of laboratory, space, and astrophysical plasmas because of its potential importance in plasma particle energization. Some satellite observations show that the number density ratio of the oxygen ions to the ambient plasma is 30% similar to 50%, sometimes, even as high as 80%. In this paper, effects of heavy ion species on KAWs are studied in a low-beta plasma. The results show that heavy ions not only considerably reduce the propagation speed of KAWs, but also remarkably influence the parallel component of perturbed electric field of KAWs (to the ambient magnetic field). The ratio of parallel to perpendicular components of perturbed field decreases (or increases) with the heavy ion abundance for KAWs dominated by the electron inertial length (or by ion acoustic gyroradius). In particular, the resonant condition of KAWs with thermal electrons is modified by the heavy ion species.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11290164 and11574339)the National Science Fund for Outstanding Young Scholars (Grant No. 11422542)Shanghai Supercomputer Center of China and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase)
文摘Recently, we have found a reversible transition between the dispersion and aggregation states of solute molecules in aqueous solutions confined in nanoscale geometry, where solutes exhibit distinct behavior in a new association state from that in the dispersion and aggregation states observed usually in macroscopic systems. However, it remains unknown whether this new association state of solute molecules found in nanoconfined systems would vanish with the system size increasing and approaching the macroscopic scale. Here, we achieve the phase diagram of solute association states by making the analyses of Gibbs free energy of solutes in nanoconfined aqueous solutions in detail. In the phase diagram, we observe a closed regime with a finite system size of nanoconfined aqueous solutions and a solute concentration range, only in which there exists the new association state of solutes with the reversible transition between the aggregation and dispersion states, and there indeed exists an upper limit of the system size for the new association state, around several tens nanometers. These findings regarding the intimate connection between the system size and the solute association behavior provides the comprehensive understanding of the association dynamics of solutes in nanoconfined environment.