Fine face-centered cubic (FCC) nickel powders were synthesized by liquid phase reduction with different surfactants. The products were investigated by scanning electron microscopy (SEM), laser particle size analyzer a...Fine face-centered cubic (FCC) nickel powders were synthesized by liquid phase reduction with different surfactants. The products were investigated by scanning electron microscopy (SEM), laser particle size analyzer and X-ray powder diffraction (XRD). The results indicate that the type, dosage and relative molecular mass of surfactants significantly impact the purity, dispersion property, particle size, size distribution and morphology of the products. The nonionic surfactants poly ethylene glycol (PEG) and polyethylene glycol sorbitan monostearate (Tween) showed better dispersing ability in the reaction system than the others. The optimal mass ratios of surfactant to Ni are 100 mg/g and 150 mg/g for PEG-600 and Tween-40, respectively. The products obtained in the optimal conditions have ideal morphology and narrow size distribution. Moreover, study on the relative molecular mass effect revealed that with the increase of the relative molecular mass of Tween, the morphology of nickel powders changed from sphere to spiny ball.展开更多
Molecular nitrogen is relatively inert and the activation of its triple bond is full of challenges and of significance.Hence,searching for an efficiently heterogeneous catalyst with high stability and dispersion is on...Molecular nitrogen is relatively inert and the activation of its triple bond is full of challenges and of significance.Hence,searching for an efficiently heterogeneous catalyst with high stability and dispersion is one of the important targets of chemical technology.Here,we report a Ba‐K/Ru‐MC catalyst with Ru particle size of 1.5–2.5 nm semi‐embedded in a mesoporous C matrix and with dual promoters of Ba and K that exhibits a higher activity than the supported Ba‐Ru‐K/MC catalyst,although both have similar metal particle sizes for ammonia synthesis.Further,the Ba‐K/Ru‐MC catalyst is more active than commercial fused Fe catalysts and supported Ru catalysts.Characterization techniques such as high‐resolution transmission electron microscopy,N2 physisorption,CO chemisorption,and temperature‐programmed reduction suggest that the Ru nanoparticles have strong interactions with the C matrix in Ba‐K/Ru‐MC,which may facilitate electron transport better than supported nanoparticles.展开更多
The effect of a modified ester collector named as BL on the flotation of chalcopyrite at low temperatures was investigated by micro-flotation tests,contact angle measurements,adsorption experiments,laser particle size...The effect of a modified ester collector named as BL on the flotation of chalcopyrite at low temperatures was investigated by micro-flotation tests,contact angle measurements,adsorption experiments,laser particle size analysis,cryogenic transmission electron microscopy(Cryo-TEM)and Fourier transform infrared(FTIR)analyses.Micro-flotation tests proved that the collecting ability of BL for chalcopyrite was significantly better than that of N,N-diethyl dithiocarbamate propiononitrile ester(ester-105)at low temperatures.Combined with laser particle size,Cryo-TEM and FTIR analyses,it was found that the particle size of BL in water was smaller than that of ester-105,and the distributed density of BL was higher than that of ester-105 at low temperatures,indicating that BL dispersed well at low temperatures.Therefore,BL was more easily adsorbed on the chalcopyrite surface and improved the surface hydrophobic degree of chalcopyrite,which were also confirmed by the contact angle measurements and adsorption experiments.展开更多
A rosin derivative and maleopimaric acid diethanolamide(MAD), was synthesized, characterized by FTIR and1 H NMR, and applied as dispersant for the coal-water slurry(CWS) prepared from Chinese Shenfu coal. The CWS appl...A rosin derivative and maleopimaric acid diethanolamide(MAD), was synthesized, characterized by FTIR and1 H NMR, and applied as dispersant for the coal-water slurry(CWS) prepared from Chinese Shenfu coal. The CWS application performance investigation shows that the MAD dispersant has better abilities in reducing CWS viscosity and stabilizing the slurry than a commercial dispersant—sulfonated naphthalene-formaldehyde condensate(SNF). The physicochemical property investigation of the two tested dispersants shows that the adsorption amount of the MAD at coal-water interface is much larger than that of SNF, and the MAD has better wetting property than the SNF on the coal surface. It indicated that the excellent capabilities of MAD are related to the adsorption mode of standing upright on the coal surface. Based on the above, the mechanism of dispersion and stabilization of the CWS prepared from MAD dispersant is presented.展开更多
Experiment of synthesizing a disperser for coal water slurry (CWS) by using fractions of anthracene oil from high-temperature coal tar was performed. The orthogonal test was used to investigate the influence of temper...Experiment of synthesizing a disperser for coal water slurry (CWS) by using fractions of anthracene oil from high-temperature coal tar was performed. The orthogonal test was used to investigate the influence of temperature, time, quantity of sulfonation agent and condensation agent and the interaction of these factors on properties of the disperser. The result shows that the influence of temperature, time, quantity of sulfonation agent and condensation agent, and the interaction of sulfonation time and sulfonation agent has a significant influence on the properties of disperser. The optimal condition of synthesis is that in 150g of the fractions of anthracene oil, 40 mL of sulfonation agent is added and sulfonated for 3 h at 130℃, then, 10 mL of condensing agent is added and condensated for 1.5 h at 115 ℃.展开更多
Silica-dispersed NiMo hydrodesulfurization catalysts were synthesized by the deposition-precipitation method. For comparative purposes, bulk NiMo catalysts were obtained by co-precipitation. The silica-dispersed NiMo ...Silica-dispersed NiMo hydrodesulfurization catalysts were synthesized by the deposition-precipitation method. For comparative purposes, bulk NiMo catalysts were obtained by co-precipitation. The silica-dispersed NiMo catalyst had highly active metals content. Silica was employed to disperse active metals for full utilization of active components. The BET analysis showed that the silica-dispersed NiMo catalysts had a high surface area (147.0 m2/g) and pore volume (0.27 mL/g), whereas the bulk NiMo catalysts exhibited a very low surface area (87.5 m2/g). Transmission electron microscopy results proved that the active components were dispersed on the SiO2 substrate. X-ray diffraction patterns of the silicadispersed NiMo catalyst and the bulk NiMo catalyst were indexed to NiMoO4. The hydrodesulfurization activity of silicadispersed NiMo catalysts was much higher than that of reference catalysts and could be up to twice greater than those of commercial NiMo alumina-supported systems per gram of catalyst. The activity testing results also demonstrated that the silica-dispersed NiMo catalyst was an effective hydrodesulflarization catalyst.展开更多
基金Projects(51074096,51274130)supported by the National Natural Science Foundation of China
文摘Fine face-centered cubic (FCC) nickel powders were synthesized by liquid phase reduction with different surfactants. The products were investigated by scanning electron microscopy (SEM), laser particle size analyzer and X-ray powder diffraction (XRD). The results indicate that the type, dosage and relative molecular mass of surfactants significantly impact the purity, dispersion property, particle size, size distribution and morphology of the products. The nonionic surfactants poly ethylene glycol (PEG) and polyethylene glycol sorbitan monostearate (Tween) showed better dispersing ability in the reaction system than the others. The optimal mass ratios of surfactant to Ni are 100 mg/g and 150 mg/g for PEG-600 and Tween-40, respectively. The products obtained in the optimal conditions have ideal morphology and narrow size distribution. Moreover, study on the relative molecular mass effect revealed that with the increase of the relative molecular mass of Tween, the morphology of nickel powders changed from sphere to spiny ball.
基金supported by the National Natural Science Foundation of China(20803064)the Natural Science Foundation of Zhejiang Provence(LY17B030010)~~
文摘Molecular nitrogen is relatively inert and the activation of its triple bond is full of challenges and of significance.Hence,searching for an efficiently heterogeneous catalyst with high stability and dispersion is one of the important targets of chemical technology.Here,we report a Ba‐K/Ru‐MC catalyst with Ru particle size of 1.5–2.5 nm semi‐embedded in a mesoporous C matrix and with dual promoters of Ba and K that exhibits a higher activity than the supported Ba‐Ru‐K/MC catalyst,although both have similar metal particle sizes for ammonia synthesis.Further,the Ba‐K/Ru‐MC catalyst is more active than commercial fused Fe catalysts and supported Ru catalysts.Characterization techniques such as high‐resolution transmission electron microscopy,N2 physisorption,CO chemisorption,and temperature‐programmed reduction suggest that the Ru nanoparticles have strong interactions with the C matrix in Ba‐K/Ru‐MC,which may facilitate electron transport better than supported nanoparticles.
基金financial supports from the National Natural Science Foundation of China(No.52074206)the Talent Science and Technology Fund of Xi’an University of Architecture and Technology,China(No.ZR19062)+4 种基金the Open Foundation of State Key Laboratory of Mineral Processing,China(No.BGRIMM-KJSKL-2021-19)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JQ-507)the Special Research Project of Shaanxi Education Department,China(No.21JK0731)the Key Program for International S&T Cooperation Projects of Shaanxi Province,China(No.2021KWZ-16)the Natural Science Foundation of Qinghai Province,China(No.2021-ZJ-975Q)。
文摘The effect of a modified ester collector named as BL on the flotation of chalcopyrite at low temperatures was investigated by micro-flotation tests,contact angle measurements,adsorption experiments,laser particle size analysis,cryogenic transmission electron microscopy(Cryo-TEM)and Fourier transform infrared(FTIR)analyses.Micro-flotation tests proved that the collecting ability of BL for chalcopyrite was significantly better than that of N,N-diethyl dithiocarbamate propiononitrile ester(ester-105)at low temperatures.Combined with laser particle size,Cryo-TEM and FTIR analyses,it was found that the particle size of BL in water was smaller than that of ester-105,and the distributed density of BL was higher than that of ester-105 at low temperatures,indicating that BL dispersed well at low temperatures.Therefore,BL was more easily adsorbed on the chalcopyrite surface and improved the surface hydrophobic degree of chalcopyrite,which were also confirmed by the contact angle measurements and adsorption experiments.
基金the financial supports provided by the National Natural Science Foundation of China (No. 21176148) the Scientific Subject Foundation of the Education Department of Shaanxi Provincial Government of China (No. 11JK0562)
文摘A rosin derivative and maleopimaric acid diethanolamide(MAD), was synthesized, characterized by FTIR and1 H NMR, and applied as dispersant for the coal-water slurry(CWS) prepared from Chinese Shenfu coal. The CWS application performance investigation shows that the MAD dispersant has better abilities in reducing CWS viscosity and stabilizing the slurry than a commercial dispersant—sulfonated naphthalene-formaldehyde condensate(SNF). The physicochemical property investigation of the two tested dispersants shows that the adsorption amount of the MAD at coal-water interface is much larger than that of SNF, and the MAD has better wetting property than the SNF on the coal surface. It indicated that the excellent capabilities of MAD are related to the adsorption mode of standing upright on the coal surface. Based on the above, the mechanism of dispersion and stabilization of the CWS prepared from MAD dispersant is presented.
文摘Experiment of synthesizing a disperser for coal water slurry (CWS) by using fractions of anthracene oil from high-temperature coal tar was performed. The orthogonal test was used to investigate the influence of temperature, time, quantity of sulfonation agent and condensation agent and the interaction of these factors on properties of the disperser. The result shows that the influence of temperature, time, quantity of sulfonation agent and condensation agent, and the interaction of sulfonation time and sulfonation agent has a significant influence on the properties of disperser. The optimal condition of synthesis is that in 150g of the fractions of anthracene oil, 40 mL of sulfonation agent is added and sulfonated for 3 h at 130℃, then, 10 mL of condensing agent is added and condensated for 1.5 h at 115 ℃.
基金the financial support from the National Basic Research Program(No. 2010CB226905) of China.
文摘Silica-dispersed NiMo hydrodesulfurization catalysts were synthesized by the deposition-precipitation method. For comparative purposes, bulk NiMo catalysts were obtained by co-precipitation. The silica-dispersed NiMo catalyst had highly active metals content. Silica was employed to disperse active metals for full utilization of active components. The BET analysis showed that the silica-dispersed NiMo catalysts had a high surface area (147.0 m2/g) and pore volume (0.27 mL/g), whereas the bulk NiMo catalysts exhibited a very low surface area (87.5 m2/g). Transmission electron microscopy results proved that the active components were dispersed on the SiO2 substrate. X-ray diffraction patterns of the silicadispersed NiMo catalyst and the bulk NiMo catalyst were indexed to NiMoO4. The hydrodesulfurization activity of silicadispersed NiMo catalysts was much higher than that of reference catalysts and could be up to twice greater than those of commercial NiMo alumina-supported systems per gram of catalyst. The activity testing results also demonstrated that the silica-dispersed NiMo catalyst was an effective hydrodesulflarization catalyst.