Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element metho...Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element method. Then, based on the competition theory of condensation and percolation, radial segregation due to differences in particle volume and/or density was analyzed. The results show that if either percolation effect induced by volume difference or condensation effect induced by density difference dominates in the active layer of moving bed, separation will occur. Controlling the volume ratio or density ratio of the two types of particles can achieve an equilibrium state between percolation and condensation, and then homogenous mixture can be obtained. When the percolation balances with the condensation, the relationship between volume ratioand density ratiopresents nearly a power function. Scaling up a rotating drum will not affect the mixing degree of the granular bed so long as the volume ratio and density ratio are predefined.展开更多
The discrete element method(DEM) has been widely used to simulate microscopic interactions between particles.Screening is a deeply complicated process when considering the law of motion for the particles,themselves.In...The discrete element method(DEM) has been widely used to simulate microscopic interactions between particles.Screening is a deeply complicated process when considering the law of motion for the particles,themselves.In this paper,a numerical model for the study of a particle screening process using the DEM is presented.Special attention was paid to the modeling of a vibrating screen that allows particles to pass through,or to rebound,when approaching the screen surface.Inferences concerning screen length and vibrating frequency as they relate to screening efficiency were studied.The conclusions were:three-dimensional simulation of screening efficiency along the screen length follows an exponential distribution;when the sieve vibrates over a certain frequency range the screening efficiency is stable;and,higher vibration frequencies can improve the handling capacity of the screening machine.展开更多
The quantitative evaluation of errors involved in a particular numerical modelling is of prime importance for the effectiveness and reliability of the method. Errors in Distinct Element Modelling are generated mainly ...The quantitative evaluation of errors involved in a particular numerical modelling is of prime importance for the effectiveness and reliability of the method. Errors in Distinct Element Modelling are generated mainly through three resources as simplification of physical model, determination of parameters and boundary conditions. A measure of errors which represent the degree of numerical solution 'close to true value' is proposed through fuzzy probability in this paper. The main objective of this paper is to estimate the reliability of Distinct Element Method in rock engineering practice by varying the parameters and boundary conditions. The accumulation laws of standard errors induced by improper determination of parameters and boundary conditions are discussed in delails. Furthermore, numerical experiments are given to illustrate the estimation of fuzzy reliability. Example shows that fuzzy reliability falls between 75%-98% when the relative standard errors of input data is under 10 %.展开更多
基金Projects(5137424151275531)supported by the National Natural Science Foundation of ChinaProject(CX2014B059)supported by the Innovation Foundation for Postgraduate of Hunan Province,China
文摘Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element method. Then, based on the competition theory of condensation and percolation, radial segregation due to differences in particle volume and/or density was analyzed. The results show that if either percolation effect induced by volume difference or condensation effect induced by density difference dominates in the active layer of moving bed, separation will occur. Controlling the volume ratio or density ratio of the two types of particles can achieve an equilibrium state between percolation and condensation, and then homogenous mixture can be obtained. When the percolation balances with the condensation, the relationship between volume ratioand density ratiopresents nearly a power function. Scaling up a rotating drum will not affect the mixing degree of the granular bed so long as the volume ratio and density ratio are predefined.
基金Project 2006HZ0002-2 supported by the Special Topic Fund of Key Science and Technology of Fujian Province
文摘The discrete element method(DEM) has been widely used to simulate microscopic interactions between particles.Screening is a deeply complicated process when considering the law of motion for the particles,themselves.In this paper,a numerical model for the study of a particle screening process using the DEM is presented.Special attention was paid to the modeling of a vibrating screen that allows particles to pass through,or to rebound,when approaching the screen surface.Inferences concerning screen length and vibrating frequency as they relate to screening efficiency were studied.The conclusions were:three-dimensional simulation of screening efficiency along the screen length follows an exponential distribution;when the sieve vibrates over a certain frequency range the screening efficiency is stable;and,higher vibration frequencies can improve the handling capacity of the screening machine.
文摘The quantitative evaluation of errors involved in a particular numerical modelling is of prime importance for the effectiveness and reliability of the method. Errors in Distinct Element Modelling are generated mainly through three resources as simplification of physical model, determination of parameters and boundary conditions. A measure of errors which represent the degree of numerical solution 'close to true value' is proposed through fuzzy probability in this paper. The main objective of this paper is to estimate the reliability of Distinct Element Method in rock engineering practice by varying the parameters and boundary conditions. The accumulation laws of standard errors induced by improper determination of parameters and boundary conditions are discussed in delails. Furthermore, numerical experiments are given to illustrate the estimation of fuzzy reliability. Example shows that fuzzy reliability falls between 75%-98% when the relative standard errors of input data is under 10 %.