The highly-dispersed iron element decorated Ni foam was prepared by simple immersion in a ferric nitrate solution at room temperature without using acid etching, and characterized by X-ray powder diffraction(XRD), sca...The highly-dispersed iron element decorated Ni foam was prepared by simple immersion in a ferric nitrate solution at room temperature without using acid etching, and characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), EDAX spectrum(EDAX mapping) and Raman spectroscopy. The EDAX spectrum illustrated that iron element was highly-dispersed over the entire surface of nickel foam, and the Raman spectroscopy revealed that both Ni-O and Fe-O bonds were formed on the surface of the as-prepared electrode. Moreover, the iron element decorated Ni foam electrode can be used as non-enzymatic glucose sensor and it exhibits not only an ultra-wide linear concentration range of 1-18 mmol/L with an outstanding sensitivity of 1.0388 m A·mmol/(L·cm2), but also an excellent ability of stability and selectivity. Therefore, this work presents a simple yet effective approach to successfully modify Ni foam as non-enzymatic glucose sensor.展开更多
Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means...Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), temperature programmed reduction (TPR), hydrogen temperature programmed desorption (H2-TPD) and O2 titration. Co-support compound formation can be detected in catalyst system by XRD. For the Co/Al2O3 catalysts with low cobalt loading, CoAl2O4 phase appears visibly. Two different reduction regions can be presented for Co/Al2O3 catalysts, which belong to Co3O4 crystallites (reduction at 320 ℃) and cobalt oxide-alumina interaction species (reduction at above 400 ℃). Increasing Co loading results in the increase of Co3O4 crystallite size. The reduced Co/Al2O3 catalysts have two adsorption sites, and cobalt loading greatly influences the adsorption behavior. With the increase of cobalt loading, the amount of low temperature adsorption is increased, the amount of high temperature adsorption is decreased, and the percentage reduction and cobalt crystallite size are increased.展开更多
In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for ...In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for tracer gas dispersion in the bed. An analytical solution is derived to estimate the dispersion coefficients, Dxand Dy, in a horizontal plane. The concentration profiles at different sampling heights with various gas velocities are plotted.Subsequently, to estimate the dispersion coefficients, surface fitting of the obtained analytical solution to the experimental data is performed. The dispersion coefficients obtained from this model are compared with those of a conventional model. Additionally, the effect of walls, bed height and gas injection rate on the dispersion coefficients in a horizontal plane is investigated, and the effect of distributor design on the dispersion coefficients in a horizontal plane is investigated with different tracer positions. It is found that Dxand Dyare nearly equivalent at a lower tracer gas ratio of the injected gas to the total gas flow rate. It is also demonstrated that the effect of bed height on Dxis minor. This model is also able to estimate the dispersion coefficients in the case of a multihorizontal nozzle distributor.展开更多
基金Project(2019zzts684)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The highly-dispersed iron element decorated Ni foam was prepared by simple immersion in a ferric nitrate solution at room temperature without using acid etching, and characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), EDAX spectrum(EDAX mapping) and Raman spectroscopy. The EDAX spectrum illustrated that iron element was highly-dispersed over the entire surface of nickel foam, and the Raman spectroscopy revealed that both Ni-O and Fe-O bonds were formed on the surface of the as-prepared electrode. Moreover, the iron element decorated Ni foam electrode can be used as non-enzymatic glucose sensor and it exhibits not only an ultra-wide linear concentration range of 1-18 mmol/L with an outstanding sensitivity of 1.0388 m A·mmol/(L·cm2), but also an excellent ability of stability and selectivity. Therefore, this work presents a simple yet effective approach to successfully modify Ni foam as non-enzymatic glucose sensor.
文摘Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), temperature programmed reduction (TPR), hydrogen temperature programmed desorption (H2-TPD) and O2 titration. Co-support compound formation can be detected in catalyst system by XRD. For the Co/Al2O3 catalysts with low cobalt loading, CoAl2O4 phase appears visibly. Two different reduction regions can be presented for Co/Al2O3 catalysts, which belong to Co3O4 crystallites (reduction at 320 ℃) and cobalt oxide-alumina interaction species (reduction at above 400 ℃). Increasing Co loading results in the increase of Co3O4 crystallite size. The reduced Co/Al2O3 catalysts have two adsorption sites, and cobalt loading greatly influences the adsorption behavior. With the increase of cobalt loading, the amount of low temperature adsorption is increased, the amount of high temperature adsorption is decreased, and the percentage reduction and cobalt crystallite size are increased.
基金The financial support from the Ministry of Science and Technology under Grant MOST 105-3113-E-033-001
文摘In a rectangular fluidized bed combustor, the tracer gas is injected continuously into the bed from a point source at the center of the distributor plate. In this study, a general governing equation is formulated for tracer gas dispersion in the bed. An analytical solution is derived to estimate the dispersion coefficients, Dxand Dy, in a horizontal plane. The concentration profiles at different sampling heights with various gas velocities are plotted.Subsequently, to estimate the dispersion coefficients, surface fitting of the obtained analytical solution to the experimental data is performed. The dispersion coefficients obtained from this model are compared with those of a conventional model. Additionally, the effect of walls, bed height and gas injection rate on the dispersion coefficients in a horizontal plane is investigated, and the effect of distributor design on the dispersion coefficients in a horizontal plane is investigated with different tracer positions. It is found that Dxand Dyare nearly equivalent at a lower tracer gas ratio of the injected gas to the total gas flow rate. It is also demonstrated that the effect of bed height on Dxis minor. This model is also able to estimate the dispersion coefficients in the case of a multihorizontal nozzle distributor.