Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any pr...Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.展开更多
Three dimensional (3D) flower-like basic zinc carbonate constructed by multilayered nanoplates were rapidly prepared at room temperature through the direct precipitation method coupled with membrane dispersion technol...Three dimensional (3D) flower-like basic zinc carbonate constructed by multilayered nanoplates were rapidly prepared at room temperature through the direct precipitation method coupled with membrane dispersion technology, and porous ZnO with similar structures could be obtained after calcining the precursor. The structural properties of the products before and after the calcining process were characterized by SEM, TEM and XRD.The supersaturation of the reaction system due to the membrane dispersion played an important role in the formation of uniform Zn_5(CO_3)_2(OH)_6 precursors. A plausible mechanism was proposed for the formation of the flower-like ZnO assembled by nanoplates composed of nanoparticles. The obtained ZnO microspheres showed excellent photocatalytic properties, which could be attributed to the open structure and remarkable amount of porous nanoplates.展开更多
To investigate dispersion mechanism of water-based ferrofluid, the effects of electrolytes on the dispersibility of ferrofluid in the dispersing system with different pH values were discussed. The ζ-potential of magn...To investigate dispersion mechanism of water-based ferrofluid, the effects of electrolytes on the dispersibility of ferrofluid in the dispersing system with different pH values were discussed. The ζ-potential of magnetic nano-particles was measured to discover the adsorbent state of oleate group on the surface of magnetite particles. The mechanism that coexisting electrolyte influences the dispersibility was studied. The results show that the electrolyte affects the stability of ferrofluid through an effect on the structure of surfactant bilayer adsorption, which was proved by ζ-potential measured. The associated mechanism of steric and electrostatic is dominant in aqueous ferrofluid.展开更多
In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (H...In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (HV and VH polarization) scattering cases are neglected. Therefore, much important information must be lost. Research on full polarization SAR system is an important approach to extract more useful information from SAR imaging. In this paper, the authors derived the full polarization scattering coefficients of 2-D sea fractal surface and simulated the radar cross section (RCS) of different polarizations. They also gave the exact theoretical explanations of the fully polarization scattering characteristics of sea fractal surface, and confirmed that the depolarization can be neglected. The result is the basis of the full SAR system design and SAR imaging.展开更多
Monodispersed manganese ferrite (MnFe2O4) nanocrystals could be successfully synthesized in large quantities via a facile synthetic technique based on the pyrolysis of organometallic compound precursor, in which oct...Monodispersed manganese ferrite (MnFe2O4) nanocrystals could be successfully synthesized in large quantities via a facile synthetic technique based on the pyrolysis of organometallic compound precursor, in which octadecene was used as solvent, and oleic acid and oleylamine were used as capping ligands. MnFe204 nanocrystals were obtained with size in a tunable range of 4- 15 nm and their morphologies could be tuned from spherical to triangle-shaped by varying the surfactants. The phase structure, morphology, and size of the products were characterized in detail by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Magnetic properties of MnFe2O4 nanocrystals with different morphologies were measured using a superconducting quantum interference device (SQUID). Both monodisperse MnFe204 nanocrystals with spherical and triangle-shapes are superparamagnetic at room temperature while ferromagnetic at 2 K. The pyrolysis method may provide an effective route to synthesize other spinel ferrites or metal oxides nanocrystals.展开更多
The primary interest to this study was to investigate the effect of milling parameters on the size of hydrophobically modified starch particles, aiming to produce small, uniformly sized modified starch microspheres. O...The primary interest to this study was to investigate the effect of milling parameters on the size of hydrophobically modified starch particles, aiming to produce small, uniformly sized modified starch microspheres. Octie, a commercial product originated from cornstarch modified using Octenyl Succinate Anhydride (OSA), was dispersed (3 wt%) using different media (water or ethanol) and subsequently wet-milled using a beads mill with zirconium beads at a rotation of 6,000 rpm up to 30 min. It was found that milling Octie in water dispersion for 3 min resulted in the smallest mean particle size (2.04 i 0.91 ktm), compared to unmilled modified starch granules (15.2 ~ 6.0 lam). Granular size and morphology changed considerably with further milling. For instance, very dense clusters with variable particle sizes (20.6 ~ 10.0 lam) were obtained after 30 min milling. As depicted by Scanning Electronic Microscopy, a large number of particles were apparently flattened during the milling process rather than broken, forming aggregates. Ultimately, within the range of experimental conditions tested, production of sub-micron modified starch particles was not possible.展开更多
In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limit...In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations.展开更多
Solid phase extraction (SPE) is a widely used sample pretreatment method for separation, purification and enrichment, which has been established due to its significant advantages of time-saving, low consumption of s...Solid phase extraction (SPE) is a widely used sample pretreatment method for separation, purification and enrichment, which has been established due to its significant advantages of time-saving, low consumption of solvent, high enrichment factor, high accuracy, etc. In recent years, a variety of new SPE methods such as molecularly imprinted solid phase extraction (MISPE), magnetic solid phase extraction (MSPE), solid phase micro-extraction (SPME), etc., which are superior to the conventional SPE, have been developed and been widely applied to food, drugs, and environmental monitoring. In this paper, the basic principles and methods of SPE and its new applications in different areas are reviewed.展开更多
Using the industrial technologies of rubber latex irradiation,preparation of nanoscale silica(SiO2) slurry,mixing irradiated rubber latex with SiO2 slurry,and the spray drying,we have prepared the ultrafine fully-vulc...Using the industrial technologies of rubber latex irradiation,preparation of nanoscale silica(SiO2) slurry,mixing irradiated rubber latex with SiO2 slurry,and the spray drying,we have prepared the ultrafine fully-vulcanized powder carboxyl styrene-butadiene rubber(UFPCSBR)/SiO2 nanocompound powder,in which the SiO2 particles and UFPCSBR particles are isolated and stuck each other.When the UFPCSBR/SiO2 nanocompound powder is mixed with crude rubber,the UFPCSBR particles are dispersed well in rubber matrix because of their good compatibility,then the SiO2 particles are also dispersed well in rubber matrix because of the carrier nature of the UFPCSBR particles during the mixing procedure,and the novel rubber/UFPCSBR/SiO2 nanocomposites are fabricated.Compared with the rubber composites prepared by mixing the crude rubber with the UFPCSBR powder and SiO2 powder one after the other,the novel UFPCSBR/SiO2 nanocompound modified rubber/UFPCSBR/SiO2 nanocomposites have better abrasion resistance,higher tensile strength and tear strength,and lower heat build-up data.Noteworthily,the tanδ-temperature curve of the novel rubber/UFPCSBR/SiO2 nanocomposites has the second tanδ peak due to the newly generated boundary layer surrounding the SiO2 particles,increasing the tanδ values in the temperature range of 0-20℃,which is very important to the research of green tyre tread.展开更多
Rhizosphere drives plant uptake of sparingly soluble soil zinc(Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes(Sehar-06 and Vatan),Zn fracti...Rhizosphere drives plant uptake of sparingly soluble soil zinc(Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes(Sehar-06 and Vatan),Zn fractions in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties;their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-effcient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils.展开更多
Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and...Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature.In order to verify the origin of the ferromagnetism,we employed a series of structural,chemical,and electronic state characterizations.Combined with electron microscopy and transport measurements,synchrotron-based grazing incident wide angle X-ray scattering,soft X-ray absorption and circular dichroism clearly reveal that the roomtemperature ferromagnetism originates from the In0.23Co0.77O1-v,amorphous phase with a large tunable range of oxygen vacancies.The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3,with the evolving electrical resistivity from5×103μΩ cm to above 2.5×105 μΩ cm.Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies,driving the system towards non-ferromagnetism and insulating regime.Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides,which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.展开更多
文摘Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.
基金Supported by the National Natural Science Foundation of China(21125629,21306079,21276124)Innovative Research Team Program by the Ministry of Education of China(IRT13070)+3 种基金China Postdoctoral Science Foundation(2014M561640)Jiangsu Planned Projects for Postdoctoral Research Funds(1401082B)Jiangsu province scientific supporting project(No.BE2014717)the Natural Science Foundation of Jiangsu Province(BK20150277)
文摘Three dimensional (3D) flower-like basic zinc carbonate constructed by multilayered nanoplates were rapidly prepared at room temperature through the direct precipitation method coupled with membrane dispersion technology, and porous ZnO with similar structures could be obtained after calcining the precursor. The structural properties of the products before and after the calcining process were characterized by SEM, TEM and XRD.The supersaturation of the reaction system due to the membrane dispersion played an important role in the formation of uniform Zn_5(CO_3)_2(OH)_6 precursors. A plausible mechanism was proposed for the formation of the flower-like ZnO assembled by nanoplates composed of nanoparticles. The obtained ZnO microspheres showed excellent photocatalytic properties, which could be attributed to the open structure and remarkable amount of porous nanoplates.
基金Project(50374083) supported by the National Natural Science Foundation of ChinaProject(134375215) supported by the Research Fund for Postgraduate Innovation Project of Central South University, China
文摘To investigate dispersion mechanism of water-based ferrofluid, the effects of electrolytes on the dispersibility of ferrofluid in the dispersing system with different pH values were discussed. The ζ-potential of magnetic nano-particles was measured to discover the adsorbent state of oleate group on the surface of magnetite particles. The mechanism that coexisting electrolyte influences the dispersibility was studied. The results show that the electrolyte affects the stability of ferrofluid through an effect on the structure of surfactant bilayer adsorption, which was proved by ζ-potential measured. The associated mechanism of steric and electrostatic is dominant in aqueous ferrofluid.
基金Supported by the High Technology Research and Development Progrannne of China (No. 2002AA633120) and the National Natural Science Foundation of China (No. 40276050).
文摘In the conventional single polarization SAR system, only the scattering information of HH polarization or VV polarization can be obtained. Only co-polarizaion scattering cases are considered and cross-polarizaiton (HV and VH polarization) scattering cases are neglected. Therefore, much important information must be lost. Research on full polarization SAR system is an important approach to extract more useful information from SAR imaging. In this paper, the authors derived the full polarization scattering coefficients of 2-D sea fractal surface and simulated the radar cross section (RCS) of different polarizations. They also gave the exact theoretical explanations of the fully polarization scattering characteristics of sea fractal surface, and confirmed that the depolarization can be neglected. The result is the basis of the full SAR system design and SAR imaging.
基金Project(2010QZZD008) supported by the Prospect Key Projects of Fundamental Research Funds for the Central UniversitiesProject(2007FJ3008) supported by the Hunan Provincial Key Science and Technology Program of China
文摘Monodispersed manganese ferrite (MnFe2O4) nanocrystals could be successfully synthesized in large quantities via a facile synthetic technique based on the pyrolysis of organometallic compound precursor, in which octadecene was used as solvent, and oleic acid and oleylamine were used as capping ligands. MnFe204 nanocrystals were obtained with size in a tunable range of 4- 15 nm and their morphologies could be tuned from spherical to triangle-shaped by varying the surfactants. The phase structure, morphology, and size of the products were characterized in detail by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Magnetic properties of MnFe2O4 nanocrystals with different morphologies were measured using a superconducting quantum interference device (SQUID). Both monodisperse MnFe204 nanocrystals with spherical and triangle-shapes are superparamagnetic at room temperature while ferromagnetic at 2 K. The pyrolysis method may provide an effective route to synthesize other spinel ferrites or metal oxides nanocrystals.
文摘The primary interest to this study was to investigate the effect of milling parameters on the size of hydrophobically modified starch particles, aiming to produce small, uniformly sized modified starch microspheres. Octie, a commercial product originated from cornstarch modified using Octenyl Succinate Anhydride (OSA), was dispersed (3 wt%) using different media (water or ethanol) and subsequently wet-milled using a beads mill with zirconium beads at a rotation of 6,000 rpm up to 30 min. It was found that milling Octie in water dispersion for 3 min resulted in the smallest mean particle size (2.04 i 0.91 ktm), compared to unmilled modified starch granules (15.2 ~ 6.0 lam). Granular size and morphology changed considerably with further milling. For instance, very dense clusters with variable particle sizes (20.6 ~ 10.0 lam) were obtained after 30 min milling. As depicted by Scanning Electronic Microscopy, a large number of particles were apparently flattened during the milling process rather than broken, forming aggregates. Ultimately, within the range of experimental conditions tested, production of sub-micron modified starch particles was not possible.
基金Supported by the Science Foundation of Laboratory of Computational Physics, Science Foundation of China Academy of Engineering Physics under Grant Nos. 2009A0102005, 2009B0101012National Basic Research Program of China under Grant No. 2007CB815105+1 种基金National Natural Science Foundation of China under Grant Nos. 11074300, 11075021, and 11074303the Fundamental Research Funds for the Central Universities under Grant No. 2010YS03
文摘In this paper, a new flux limiter scheme with the splitting technique is successfully incorporated into a multiple-relaxation-time lattice Boltzmann (LB) model for shacked compressible flows. The proposed flux limiter scheme is efficient in decreasing the artificial oscillations and numerical diffusion around the interface. Due to the kinetic nature, some interface problems being difficult to handle at the macroscopic level can be modeled more naturally through the LB method. Numerical simulations for the Richtmyer-Meshkov instability show that with the new model the computed interfaces are smoother and more consistent with physical analysis. The growth rates of bubble and spike present a satisfying agreement with the theoretical predictions and other numerical simulations.
基金supported by the Key Laboratory for Rare Disease of Shandong Province
文摘Solid phase extraction (SPE) is a widely used sample pretreatment method for separation, purification and enrichment, which has been established due to its significant advantages of time-saving, low consumption of solvent, high enrichment factor, high accuracy, etc. In recent years, a variety of new SPE methods such as molecularly imprinted solid phase extraction (MISPE), magnetic solid phase extraction (MSPE), solid phase micro-extraction (SPME), etc., which are superior to the conventional SPE, have been developed and been widely applied to food, drugs, and environmental monitoring. In this paper, the basic principles and methods of SPE and its new applications in different areas are reviewed.
基金supported by the National Natural Science Foundation of China (Grant No. 50873049)National High Technology Research and Development Program of China ("863" Program) (Grant No. 2009AA-03Z338)+1 种基金Shandong Young Scientists Encouragement Foundation (Grant No. 2007BS04038)the Scientific Research Foundation of Shandong Education Department (Grant No. J07YA12)
文摘Using the industrial technologies of rubber latex irradiation,preparation of nanoscale silica(SiO2) slurry,mixing irradiated rubber latex with SiO2 slurry,and the spray drying,we have prepared the ultrafine fully-vulcanized powder carboxyl styrene-butadiene rubber(UFPCSBR)/SiO2 nanocompound powder,in which the SiO2 particles and UFPCSBR particles are isolated and stuck each other.When the UFPCSBR/SiO2 nanocompound powder is mixed with crude rubber,the UFPCSBR particles are dispersed well in rubber matrix because of their good compatibility,then the SiO2 particles are also dispersed well in rubber matrix because of the carrier nature of the UFPCSBR particles during the mixing procedure,and the novel rubber/UFPCSBR/SiO2 nanocomposites are fabricated.Compared with the rubber composites prepared by mixing the crude rubber with the UFPCSBR powder and SiO2 powder one after the other,the novel UFPCSBR/SiO2 nanocompound modified rubber/UFPCSBR/SiO2 nanocomposites have better abrasion resistance,higher tensile strength and tear strength,and lower heat build-up data.Noteworthily,the tanδ-temperature curve of the novel rubber/UFPCSBR/SiO2 nanocomposites has the second tanδ peak due to the newly generated boundary layer surrounding the SiO2 particles,increasing the tanδ values in the temperature range of 0-20℃,which is very important to the research of green tyre tread.
基金Supported by the Indigenous Ph.D. Fellowship Programme of the Higher Education Commission of Pakistan
文摘Rhizosphere drives plant uptake of sparingly soluble soil zinc(Zn).An investigation with three experiments was conducted to study organic acid exudation by two contrasting wheat genotypes(Sehar-06 and Vatan),Zn fractions in 10 different calcareous soils from Punjab,Pakistan,and release of different soil Zn fractions by organic acids.The two genotypes differed significantly in biomass production and Zn accumulation under deficient and optimum Zn levels in nutrient solution.At a deficient Zn level,Sehar-06 released more maleic acid in the rhizosphere than Vatan.Ten soils used in the present study had very different physicochemical properties;their total Zn and Zn distribution among different fractions varied significantly.Zinc release behaviour was determined by extracting the soils with 0.005 mol L-1 citric acid or maleic acid.The parabolic diffusion model best described Zn release as a function of time.Parabolic diffusion model fitting indicated more maleic acid-driven than citric acid-driven soil Zn mobility from different fractions.Cumulative Zn release in six consecutive extractions during 24 h ranged from 1.85 to 13.58 mg kg-1 using maleic acid and from 0.37 to 11.84 mg kg-1 using citric acid.In the selected calcareous soils,the results of stepwise linear regression indicated significant release of Fe-Mn oxide-bounded soil Zn by maleic acid and its availability to the Zn-effcient genotype.Hence,release of maleic acid by plants roots played an important role in phytoavailability of Zn from calcareous soils.
基金supported by the National Natural Science Foundation of China (11434006, 11774199, and 51871112)the National Basic Research Program of China (2015CB921502)+1 种基金the 111 Project B13029supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DEAC02-76SF00515。
文摘Material functionalities strongly depend on the stoichiometry,crystal structure,and homogeneity.Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature.In order to verify the origin of the ferromagnetism,we employed a series of structural,chemical,and electronic state characterizations.Combined with electron microscopy and transport measurements,synchrotron-based grazing incident wide angle X-ray scattering,soft X-ray absorption and circular dichroism clearly reveal that the roomtemperature ferromagnetism originates from the In0.23Co0.77O1-v,amorphous phase with a large tunable range of oxygen vacancies.The room-temperature ferromagnetism is tunable from a high saturation magnetization of 500 emu cm-3 to below 25 emu cm-3,with the evolving electrical resistivity from5×103μΩ cm to above 2.5×105 μΩ cm.Inhomogeneous nano-crystallization emerges with decreasing oxygen vacancies,driving the system towards non-ferromagnetism and insulating regime.Our work unfolds the novel functionalities of amorphous nonstoichiometric inhomogeneous oxides,which opens up new opportunities for developing spintronic materials with superior magnetic and transport properties.