Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed pha...Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed phase turbulence,is the key problem in the Eulerian-Eulerian simulation of practical dispersed multiphase flows.Although different models were developed and used,the experimental validation shows that they cannot always give satisfactory prediction results.In this paper the present author give a detailed review of the unified second-order moment (USM),k-k p and nonlinear k-k p two-phase turbulence models,proposed by him.The derivation and closure of these models are described in detail and the experimental validation and application of these models are extensively discussed.展开更多
基金supported by the National Key Project of Fundamental Research of China (Grant No.G1999-0222-07-08)the National Natural Science Foundation of China (Grant Nos.50736006 and 50606026)the Foundation of State Key Laboratory of Engines,Tianjin University (Grant No.K2010-07)
文摘Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed phase turbulence,is the key problem in the Eulerian-Eulerian simulation of practical dispersed multiphase flows.Although different models were developed and used,the experimental validation shows that they cannot always give satisfactory prediction results.In this paper the present author give a detailed review of the unified second-order moment (USM),k-k p and nonlinear k-k p two-phase turbulence models,proposed by him.The derivation and closure of these models are described in detail and the experimental validation and application of these models are extensively discussed.