Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper....Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper. It can be used to describe the later stage when drug loading is above its solubility limit. A comprehensive model is proposed and the generalized solutions are acquired by Laplace transformation, from which a special case, i.e. a perfect sink has been deduced. According to the derived equations, the concentration profiles in the matrix has been computed and illustrated and the effect of volume of extraction medium on release has been investigated.展开更多
In order to simultaneously improve strength and formability,an analytical model for the concentration distribution of precipitates and solute elements is established and used to theoretically design and control the he...In order to simultaneously improve strength and formability,an analytical model for the concentration distribution of precipitates and solute elements is established and used to theoretically design and control the heterogeneous microstructure of Al−Zn−Mg−Cu alloys.The results show that the dissolution of precipitates is mainly affected by particle size and heat treatment temperature,the heterogeneous distribution level of solute elements diffused in the alloy matrix mainly depends on the grain size,while the heat treatment temperature only has an obvious effect on the concentration distribution in the larger grains,and the experimental results of Al−Zn−Mg−Cu alloy are in good agreement with the theoretical model predictions of precipitates and solute element concentration distribution.Controlling the concentration distribution of precipitates and solute elements in Al−Zn−Mg−Cu alloys is the premise of accurately constructing heterogeneous microstructure in micro-domains,which can be used to significantly improve the formability of Al−Zn−Mg−Cu alloys with a heterostructure.展开更多
The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solutio...The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solution as the stripping solution,and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester(P507)dissolved in kerosene as the membrane solution.The effects of pH value,initial concentration of Eu3 +and different ionic strength in the feed phase,volume ratio of membrane solution to stripping solution,concentration of HCl solution, concentration of carrier,different stripping agents in the dispersion phase on the separation are investigated.The optimum condition for separation of Eu3 +is that concentration of HCl solution is 4.0 mol·L 1,concentration of carrier is 0.16 mol·L 1,and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase.The ionic strength has no significant effect on separation of Eu3 +.Under the optimum condition,when the initial concentration of Eu3 +is 0.8×10 4mol·L 1,the separation percentage of Eu 3+is 95.3%during the separation time of 130 min.The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry.The diffusion coefficient of Eu3 +in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×10 7m 2·s 1and 36.6μm,respectively.The results obtained are in good agreement with literature data.展开更多
In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimat...In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimate flame propagation speed in a lean/rich reaction medium.Flame speed for different particle diameters and the effects of various oxidizers such as carbon dioxide and oxygen on flame speed were studied.Nitrogen was considered the inert gas.In addition,the quenching distance and the minimum ignition energy(MIE) were studied as a function of dust concentration.Different burning time models for aluminum were employed and their results were compared with each other.The model was based on conduction heat transfer mechanism using the heat point source method.The combustion of single-particle was first studied and the solution was presented.Then the dust combustion was investigated using the superposition principle to include the effects of surrounding particles.It is found that larger particles have higher values of quenching distance in comparison with smaller particles in an assumed dust concentration.With the increase of dust concentration the value of MIE would be decreased for an assumed particle diameter.Considering random discrete heat sources method,the obtained results of random distribution of fuel particles in space provide closer and realistic predictions of the combustion physics of aluminum dust flame as compared with the experimental findings.展开更多
Two Gaussian air quality dispersion models, the industrial source complex short-term model (ISCST3) with and without modification have been used to simulate the pollutant concentration distribution in urban areas base...Two Gaussian air quality dispersion models, the industrial source complex short-term model (ISCST3) with and without modification have been used to simulate the pollutant concentration distribution in urban areas based on the meteorological data and the emissions distribution of sulfur dioxide. The verified data show that the modified model is more accurate in the urban area of Shijiazhuang. Using the modified model predictions, the control strategies of sulfur dioxide in the urban area have been studied, and the result show that the second long-term (to 2010) strategy can mitigate air pollution significantly and maintain pollution levels within permissible limits.展开更多
The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence o...The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence of cell components structure on heat and mass transfer phenomena as well as power generation experiment and measurement of in-plane temperature distribution by thermograph was carried out. From the simulation, the gas channel pitch of separator was the key factor to unify in-plane distribution of temperature and gas concentration on reaction surface in cell. The compression of GDL (gas diffusion layer) by cell binding caused wider distribution of mass concentration in GDL. From the experiment, the power generation performance was promoted with decreasing gas channel pitch. The temperature range in observation area was reduced with decreasing gas channel pitch. It can be concluded that the power generation performance is promoted by decreasing gas channel pitch.展开更多
In this paper a finite element model is developed to study cytosolic calcium concen- tration distribution in astrocytes for a two-dimensional steady-state case in presence of excess buffer. The mathematical model of c...In this paper a finite element model is developed to study cytosolic calcium concen- tration distribution in astrocytes for a two-dimensional steady-state case in presence of excess buffer. The mathematical model of calcium diffusion in astrocytes leads to a boundary value problem involving elliptical partial differential equation. The model con- sists of reaction-diffusion phenomena, association and dissociation rates and buffer. A point source of calcium is incorporated in the model. Appropriate boundary conditions have been framed. Finite element method is employed to solve the problem. A MATLAB program has been developed for the entire problem and simulated to compute the numer- ical results. The numerical results have been used to plot calcium concentration profiles in astrocytes. The effect of ECTA, BAPTA and aCa influx on calcium concentration distribution in astrocytes is studied with the help of numerical results.展开更多
文摘Based on the principle of chemical engineering in the multisubject field—drug delivery, the release kinetics of the slab monolithic matrix with an initially linear concentration distribution is studied in this paper. It can be used to describe the later stage when drug loading is above its solubility limit. A comprehensive model is proposed and the generalized solutions are acquired by Laplace transformation, from which a special case, i.e. a perfect sink has been deduced. According to the derived equations, the concentration profiles in the matrix has been computed and illustrated and the effect of volume of extraction medium on release has been investigated.
基金financially supported by the National Key Research and Development Program of China (No. 2021YFE0115900)the National Natural Science Foundation of China (Nos. 51871029, 51571023, 51301016)+1 种基金the Government Guided Program-Intergovernmental Bilateral Innovation Cooperation Project, China (No. BZ2019019)the Opening Project of State Key Lab of Advanced Metals and Materials, China (No. 2020-ZD02)。
文摘In order to simultaneously improve strength and formability,an analytical model for the concentration distribution of precipitates and solute elements is established and used to theoretically design and control the heterogeneous microstructure of Al−Zn−Mg−Cu alloys.The results show that the dissolution of precipitates is mainly affected by particle size and heat treatment temperature,the heterogeneous distribution level of solute elements diffused in the alloy matrix mainly depends on the grain size,while the heat treatment temperature only has an obvious effect on the concentration distribution in the larger grains,and the experimental results of Al−Zn−Mg−Cu alloy are in good agreement with the theoretical model predictions of precipitates and solute element concentration distribution.Controlling the concentration distribution of precipitates and solute elements in Al−Zn−Mg−Cu alloys is the premise of accurately constructing heterogeneous microstructure in micro-domains,which can be used to significantly improve the formability of Al−Zn−Mg−Cu alloys with a heterostructure.
基金Supported by the National Natural Science Foundation of China(90401009) the Foundation for Planning Project of West Action of Chinese Academy of Sciences(KZCX2-XB2-13) the Research Fund for Excellent Doctoral Thesis of Xi’an University of Technology(602-210805)
文摘The separation of Eu^3 +is studied with a dispersion combined liquid membrane(DCLM),in which polyvinylidene fluoride membrane(PVDF)is used as the liquid membrane support,dispersion solution containing HCl solution as the stripping solution,and 2-ethyl hexyl phosphonic acid-mono-2-ethyl hexyl ester(P507)dissolved in kerosene as the membrane solution.The effects of pH value,initial concentration of Eu3 +and different ionic strength in the feed phase,volume ratio of membrane solution to stripping solution,concentration of HCl solution, concentration of carrier,different stripping agents in the dispersion phase on the separation are investigated.The optimum condition for separation of Eu3 +is that concentration of HCl solution is 4.0 mol·L 1,concentration of carrier is 0.16 mol·L 1,and volume ratio of membrane solution to stripping solution is 30︰30 in the dispersion phase, and pH value is 4.2 in the feed phase.The ionic strength has no significant effect on separation of Eu3 +.Under the optimum condition,when the initial concentration of Eu3 +is 0.8×10 4mol·L 1,the separation percentage of Eu 3+is 95.3%during the separation time of 130 min.The kinetic equation is developed in terms of the law of mass diffusion and the theory of interface chemistry.The diffusion coefficient of Eu3 +in the membrane and the thickness of diffusion layer between feed phase and membrane phase are obtained and their values are 1.48×10 7m 2·s 1and 36.6μm,respectively.The results obtained are in good agreement with literature data.
文摘In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimate flame propagation speed in a lean/rich reaction medium.Flame speed for different particle diameters and the effects of various oxidizers such as carbon dioxide and oxygen on flame speed were studied.Nitrogen was considered the inert gas.In addition,the quenching distance and the minimum ignition energy(MIE) were studied as a function of dust concentration.Different burning time models for aluminum were employed and their results were compared with each other.The model was based on conduction heat transfer mechanism using the heat point source method.The combustion of single-particle was first studied and the solution was presented.Then the dust combustion was investigated using the superposition principle to include the effects of surrounding particles.It is found that larger particles have higher values of quenching distance in comparison with smaller particles in an assumed dust concentration.With the increase of dust concentration the value of MIE would be decreased for an assumed particle diameter.Considering random discrete heat sources method,the obtained results of random distribution of fuel particles in space provide closer and realistic predictions of the combustion physics of aluminum dust flame as compared with the experimental findings.
文摘Two Gaussian air quality dispersion models, the industrial source complex short-term model (ISCST3) with and without modification have been used to simulate the pollutant concentration distribution in urban areas based on the meteorological data and the emissions distribution of sulfur dioxide. The verified data show that the modified model is more accurate in the urban area of Shijiazhuang. Using the modified model predictions, the control strategies of sulfur dioxide in the urban area have been studied, and the result show that the second long-term (to 2010) strategy can mitigate air pollution significantly and maintain pollution levels within permissible limits.
文摘The purpose of this study is to point out the dominant factor of heat and mass distribution in single-cell PEFC (polymer electrolyte fuel cell). The numerical simulation by simple 3D model to clarify the influence of cell components structure on heat and mass transfer phenomena as well as power generation experiment and measurement of in-plane temperature distribution by thermograph was carried out. From the simulation, the gas channel pitch of separator was the key factor to unify in-plane distribution of temperature and gas concentration on reaction surface in cell. The compression of GDL (gas diffusion layer) by cell binding caused wider distribution of mass concentration in GDL. From the experiment, the power generation performance was promoted with decreasing gas channel pitch. The temperature range in observation area was reduced with decreasing gas channel pitch. It can be concluded that the power generation performance is promoted by decreasing gas channel pitch.
文摘In this paper a finite element model is developed to study cytosolic calcium concen- tration distribution in astrocytes for a two-dimensional steady-state case in presence of excess buffer. The mathematical model of calcium diffusion in astrocytes leads to a boundary value problem involving elliptical partial differential equation. The model con- sists of reaction-diffusion phenomena, association and dissociation rates and buffer. A point source of calcium is incorporated in the model. Appropriate boundary conditions have been framed. Finite element method is employed to solve the problem. A MATLAB program has been developed for the entire problem and simulated to compute the numer- ical results. The numerical results have been used to plot calcium concentration profiles in astrocytes. The effect of ECTA, BAPTA and aCa influx on calcium concentration distribution in astrocytes is studied with the help of numerical results.