The characteristics of spring precipitation and water vapor transport in South China were analyzed by using observational data and the National Centers for Environmental Prediction (NCEP) reanalysis data. The results ...The characteristics of spring precipitation and water vapor transport in South China were analyzed by using observational data and the National Centers for Environmental Prediction (NCEP) reanalysis data. The results show that, during the spring, each component of the water cycle (precipitation, wind field, specific humidity, water vapor transport, etc.) in South China exhibits a notable interdecadal variability. An abrupt increase in spring precipitation occurred in the early 1970s. During the dry period from 1958 to 1971, a water vapor flux divergence (positive divQ) existed in South China, which may have led to the deficiency in rainfall. However, during the wet period from 1973 to 1989, there was a remarkable water vapor flux convergence (negative divQ) in South China, which may have resulted in the higher rainfall. The interdecadal variability of water vapor transport is closely related to the interdecadal variability of wind fields, although the interdecadal variability of specific humidity also plays a role to some extent, and the interdecadal variability of the zonal water vapor transport contributes much more to the interdecadal variability of spring precipitation than the meridional water vapor transport.展开更多
Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the...Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the intention to explain and justify this development through salient examples. The ambient noise data processing procedure can be divided into four principal phases: ① single station data preparation; ② cross- correlation and temporal stacking; ③ measurements of dispersion curves ( performed with frequency-time analysis for both group and phase speeds) ; ④ quality control, including SNR analysis and selection of the acceptable measurements. In addition, we provide a specific solution for a better use of the seismic station data to ambient noise study.展开更多
Individual behavioral variation is ubiquitous across taxa and important to understand if we wish to fully use beha- vioral data to understand the ecology and evolution of organisms. Only recently have studies of indiv...Individual behavioral variation is ubiquitous across taxa and important to understand if we wish to fully use beha- vioral data to understand the ecology and evolution of organisms. Only recently have studies of individual variation in dispersal behavior become a focus of research. A better understanding of individual variation in dispersal behavior is likely to improve our understanding of population dynamics. In particular, the dynamics of critically small populations (endangered species) and large populations (pest species) may be driven by unique dispersal variants. Here we documented individual variation in the ballooning dispersal behavior of Western black widow spiderlings Latrodectus hesperus, an urban pest species found in superabundant in- festations throughout cities of the desert Southwest USA. We found a great deal of family-level variation in ballooning dispersal, and this variation was highly consistent (repeatable) across time. Maternal egg investment was a poor predictor of this ballooning dispersal. Instead, we show that spiderlings reared in isolation are significantly slower to disperse than spiderlings raised in a more natural setting surrounded by full siblings. Thus, our study examines a widespread but poorly understood dispersal behavior (ballooning), and suggests urban pest population dynamics are likely driven by the interaction of variation in individuals, families and social environments展开更多
pH-and reductive-responsive prodrug nanoparticles are constructed via a highly efficient strategy, polymerization-induced selfassembly(PISA). First, reversible addition-fragmentation chain transfer(RAFT) polymerizatio...pH-and reductive-responsive prodrug nanoparticles are constructed via a highly efficient strategy, polymerization-induced selfassembly(PISA). First, reversible addition-fragmentation chain transfer(RAFT) polymerization of 2-(diisopropylamino) ethyl methacrylate(DIPEMA) and camptothecin prodrug monomer(CPTM) using biocompatible poly(N-(2-hydroxypropyl) methacrylamide)(PHPMA-CPDB) as the macro RAFT agent is carried out, forming prodrug diblock copolymer PHPMA-P(DIPEMA-co-CPTM). Then, simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation are achieved via RAFT dispersion polymerization of benzyl methacrylate(Bz MA) using the PHPMA-P(DIPEMA-co-CPTM) as the macro RAFT agent. The prodrug nanoparticles have three layers, the biocompatible shell(PHPMA), the drug-conjugated middle layer(P(DIPEMA-co-CPTM)) and the PBz MA core, and relatively high concentration(250 mg/g). The prodrug nanoparticles can respond to two stimuli(reductive and acidic conditions). Due to reductive microenvironment of cytosol, the cleavage of the conjugated camptothecin(CPT) within the prodrug nanoparticles could be effectively triggered. p H-Induced hydrophobic/hydrophilic transition of the PDIPEMA chains results in faster diffusion of GSH into the CPTM units, thus accelerated release of CPT is observed in mild acidic and reductive conditions. Cell viability assays show that the prodrug nanoparticles exhibit well performance of intracellular drug delivery and good anticancer activity.展开更多
Natal dispersal, the movement of an organism from its birthplace to the site of first reproduction, is fundamental to many ecological and evolutionary processes. Mechanistically, individual dispersal decisions can dep...Natal dispersal, the movement of an organism from its birthplace to the site of first reproduction, is fundamental to many ecological and evolutionary processes. Mechanistically, individual dispersal decisions can depend on both individual phe- notype and environmental cues. In particular, many established evolutionary theories of dispersal highlight the importance of the social environment. More recent research in behavioral ecology has focused on the importance of individual behavioral pheno- types. We reviewed the literature on individual behavioral phenotypes and dispersal and suggest that how individual behavioral phenotypes interact with the immediate social environment experienced by individuals in influencing dispersal is still poorly un- derstood, despite growing interest. We found that very few studies had examined the interaction of individual behavioral pheno- types and social factors, and behavioral phenotypes related to social tendencies were less commonly measured than were beha- vioral phenotypes related to exploration or response to risk. Further, and unsurprisingly, studies on social behavioral phenotypes and dispersal behaviors during the transience stage of dispersal were underrepresented compared to the departure or settlement stages. Future studies in this area should aim to" a) make explicit links between behavioral traits and their proposed effects on dispersal decisions throughout multiple stages of dispersal, b) integrate more continuous dispersal variables, and c) consider the effects of the spatial distribution and phenotypes of conspecifics (i.e., the social landscape) encountered by individual dispersers展开更多
基金supported by the National Basic Research Program of China (Grant No. 2009CB421406)the National Key Technologies R&D Program of China (Grant No. 2007BAC03A00)
文摘The characteristics of spring precipitation and water vapor transport in South China were analyzed by using observational data and the National Centers for Environmental Prediction (NCEP) reanalysis data. The results show that, during the spring, each component of the water cycle (precipitation, wind field, specific humidity, water vapor transport, etc.) in South China exhibits a notable interdecadal variability. An abrupt increase in spring precipitation occurred in the early 1970s. During the dry period from 1958 to 1971, a water vapor flux divergence (positive divQ) existed in South China, which may have led to the deficiency in rainfall. However, during the wet period from 1973 to 1989, there was a remarkable water vapor flux convergence (negative divQ) in South China, which may have resulted in the higher rainfall. The interdecadal variability of water vapor transport is closely related to the interdecadal variability of wind fields, although the interdecadal variability of specific humidity also plays a role to some extent, and the interdecadal variability of the zonal water vapor transport contributes much more to the interdecadal variability of spring precipitation than the meridional water vapor transport.
基金Jointly funded by the Natural Science Foundation of China(40774018)the Seismic Scientific and Technological Spark Project,China Earthquake Administration(XH13009Y)the Earthquake Research Foundation,Earthquake Administration of Anhui Province(20120702)
文摘Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the intention to explain and justify this development through salient examples. The ambient noise data processing procedure can be divided into four principal phases: ① single station data preparation; ② cross- correlation and temporal stacking; ③ measurements of dispersion curves ( performed with frequency-time analysis for both group and phase speeds) ; ④ quality control, including SNR analysis and selection of the acceptable measurements. In addition, we provide a specific solution for a better use of the seismic station data to ambient noise study.
文摘Individual behavioral variation is ubiquitous across taxa and important to understand if we wish to fully use beha- vioral data to understand the ecology and evolution of organisms. Only recently have studies of individual variation in dispersal behavior become a focus of research. A better understanding of individual variation in dispersal behavior is likely to improve our understanding of population dynamics. In particular, the dynamics of critically small populations (endangered species) and large populations (pest species) may be driven by unique dispersal variants. Here we documented individual variation in the ballooning dispersal behavior of Western black widow spiderlings Latrodectus hesperus, an urban pest species found in superabundant in- festations throughout cities of the desert Southwest USA. We found a great deal of family-level variation in ballooning dispersal, and this variation was highly consistent (repeatable) across time. Maternal egg investment was a poor predictor of this ballooning dispersal. Instead, we show that spiderlings reared in isolation are significantly slower to disperse than spiderlings raised in a more natural setting surrounded by full siblings. Thus, our study examines a widespread but poorly understood dispersal behavior (ballooning), and suggests urban pest population dynamics are likely driven by the interaction of variation in individuals, families and social environments
基金supported by the National Key R&D Program of China (2017YFA0205601)the National Natural Science Foundation of China (51625305, 21704095, 21774113, 21525420)
文摘pH-and reductive-responsive prodrug nanoparticles are constructed via a highly efficient strategy, polymerization-induced selfassembly(PISA). First, reversible addition-fragmentation chain transfer(RAFT) polymerization of 2-(diisopropylamino) ethyl methacrylate(DIPEMA) and camptothecin prodrug monomer(CPTM) using biocompatible poly(N-(2-hydroxypropyl) methacrylamide)(PHPMA-CPDB) as the macro RAFT agent is carried out, forming prodrug diblock copolymer PHPMA-P(DIPEMA-co-CPTM). Then, simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation are achieved via RAFT dispersion polymerization of benzyl methacrylate(Bz MA) using the PHPMA-P(DIPEMA-co-CPTM) as the macro RAFT agent. The prodrug nanoparticles have three layers, the biocompatible shell(PHPMA), the drug-conjugated middle layer(P(DIPEMA-co-CPTM)) and the PBz MA core, and relatively high concentration(250 mg/g). The prodrug nanoparticles can respond to two stimuli(reductive and acidic conditions). Due to reductive microenvironment of cytosol, the cleavage of the conjugated camptothecin(CPT) within the prodrug nanoparticles could be effectively triggered. p H-Induced hydrophobic/hydrophilic transition of the PDIPEMA chains results in faster diffusion of GSH into the CPTM units, thus accelerated release of CPT is observed in mild acidic and reductive conditions. Cell viability assays show that the prodrug nanoparticles exhibit well performance of intracellular drug delivery and good anticancer activity.
文摘Natal dispersal, the movement of an organism from its birthplace to the site of first reproduction, is fundamental to many ecological and evolutionary processes. Mechanistically, individual dispersal decisions can depend on both individual phe- notype and environmental cues. In particular, many established evolutionary theories of dispersal highlight the importance of the social environment. More recent research in behavioral ecology has focused on the importance of individual behavioral pheno- types. We reviewed the literature on individual behavioral phenotypes and dispersal and suggest that how individual behavioral phenotypes interact with the immediate social environment experienced by individuals in influencing dispersal is still poorly un- derstood, despite growing interest. We found that very few studies had examined the interaction of individual behavioral pheno- types and social factors, and behavioral phenotypes related to social tendencies were less commonly measured than were beha- vioral phenotypes related to exploration or response to risk. Further, and unsurprisingly, studies on social behavioral phenotypes and dispersal behaviors during the transience stage of dispersal were underrepresented compared to the departure or settlement stages. Future studies in this area should aim to" a) make explicit links between behavioral traits and their proposed effects on dispersal decisions throughout multiple stages of dispersal, b) integrate more continuous dispersal variables, and c) consider the effects of the spatial distribution and phenotypes of conspecifics (i.e., the social landscape) encountered by individual dispersers