期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
商用容积式燃气热水器在庭院式酒店中的应用
1
作者 吉金军 《中国建设信息(供热制冷)》 2008年第11期68-69,共2页
本文通过介绍商用容积式燃气热水器在庭院式酒店中应用的设计、选型、安装等情况,说明了商用容积式燃气热水器运用于该领域的适用性。
关键词 商用容积式燃气热 分散用水 点对点 非锅炉 选型
下载PDF
Water Use of Leymus chinensis Community 被引量:6
2
作者 宋炳煜 杨劼 +1 位作者 旭日 乌江雨 《Acta Botanica Sinica》 CSCD 2003年第10期1245-1250,共6页
Soil moisture of Leymus chinensis (Trin.) Tzvel. community has obviously stratified phenomena: the layer (0-40 cm) in which roots are concentrically distributed is directly influenced by precipitation and evapotranspi... Soil moisture of Leymus chinensis (Trin.) Tzvel. community has obviously stratified phenomena: the layer (0-40 cm) in which roots are concentrically distributed is directly influenced by precipitation and evapotranspiration. It can be called interaction layer of precipitation and evapotranspiration. The layer (40-120 cm), where water-storage capacity exchange lagged exchange of the root-layer water-storage capacity and the community evapotranspiration, can be called major water-storage layer. The layer (under 120 cm) can be called water relatively stable/balanced layer. The year 1996 was a normal flow year, and soil water had a surplus of 18 mm at the end of the growing season. The year 1998 was a high flow year, because leakage took place under continuous heavy rainfall, soil water had a deficit of 15 mm at the end of the growing season. Transpiration to evapotranspiration ( T/ET) value reflected not only the luxuriance degree of the community, but also the water use regime of the environmental resources. T/ET value was low (0.5) in May 1998, reaching 0.7 in June, then decreasing to 0.6 in July, due to the impact of rainfall inclining, while August reached the maximum (0.9), and September decreased to 0.6. Water use efficiency (WUE) was mainly restricted by the growing rate of plants under sufficient water condition (1998). Its seasonal changes were coincident with the grand period of growth of the plants. When both meanings of WUE and T/ET were analyzed profoundly, the concept of evapotranspiration efficiency (ETE) which can all-side reflect utilization regime of the environmental water resources was advanced. 展开更多
关键词 Leymus chinensis community water use efficiency (WUE) transpiration to evapotranspiration (T/ET) evapotranspiration efficiency (ETE)
下载PDF
浅谈“集体宿舍”的设计秒流量计算 被引量:2
3
作者 马龙 赵亮 张静 《给水排水》 CSCD 北大核心 2008年第5期78-79,共2页
结合工程实例,对《建筑给水排水设计规范》(GB 50015—2003)中"集体宿舍"的用水类型进行了具体分析,并对根据规范中"集体宿舍"给水设计秒流量计算公式得出的数据进行了理论和实际的对比,提出了类似工程中出现高峰... 结合工程实例,对《建筑给水排水设计规范》(GB 50015—2003)中"集体宿舍"的用水类型进行了具体分析,并对根据规范中"集体宿舍"给水设计秒流量计算公式得出的数据进行了理论和实际的对比,提出了类似工程中出现高峰时段设计流量无法满足实际用水量时应采取的措施。 展开更多
关键词 集体宿舍设计秒流量 分散用水 集中型用水(密集型用水) 额定流量 同时出流概率
下载PDF
Dust dispersion and management in underground mining faces 被引量:45
4
作者 Kurnia Jundika Candra Sasmito Agus Pulung Mujumdar Arun Sadashiv 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期39-44,共6页
Presence of fine dust in air causes serious health hazard for mine operators resulting in such serious problems as coal workers’pneumoconiosis and silicosis.Major sources of dust appear of course along the mining fac... Presence of fine dust in air causes serious health hazard for mine operators resulting in such serious problems as coal workers’pneumoconiosis and silicosis.Major sources of dust appear of course along the mining face where the minerals are extracted.Proper control and management are required to ensure safe working environment in the mine.Here,we utilize the computational fluid dynamic(CFD)approach to evaluate various methods used for mitigating dust dispersion from the mining face and for ensuring safe level of dust concentration in the mine tunnel for safety of the operators.The methods used include:application of blowing and exhaust fans,application of brattice and combination of both.The results suggest that among the examined methods,implementation of appropriately located brattice to direct the flow from the main shaft to the mining face is the most effective method to direct dust particles away from the mining face. 展开更多
关键词 Dust dispersion Modeling Undergrouand mine Ventilation
下载PDF
Synthesis, characterization and application of a dispersant based on rosin for coal-water slurry 被引量:11
5
作者 Li Junguo Zhang Guanghua +1 位作者 Shang Ting Zhu Junfeng 《International Journal of Mining Science and Technology》 SCIE EI 2014年第5期695-699,共5页
A rosin derivative and maleopimaric acid diethanolamide(MAD), was synthesized, characterized by FTIR and1 H NMR, and applied as dispersant for the coal-water slurry(CWS) prepared from Chinese Shenfu coal. The CWS appl... A rosin derivative and maleopimaric acid diethanolamide(MAD), was synthesized, characterized by FTIR and1 H NMR, and applied as dispersant for the coal-water slurry(CWS) prepared from Chinese Shenfu coal. The CWS application performance investigation shows that the MAD dispersant has better abilities in reducing CWS viscosity and stabilizing the slurry than a commercial dispersant—sulfonated naphthalene-formaldehyde condensate(SNF). The physicochemical property investigation of the two tested dispersants shows that the adsorption amount of the MAD at coal-water interface is much larger than that of SNF, and the MAD has better wetting property than the SNF on the coal surface. It indicated that the excellent capabilities of MAD are related to the adsorption mode of standing upright on the coal surface. Based on the above, the mechanism of dispersion and stabilization of the CWS prepared from MAD dispersant is presented. 展开更多
关键词 Rosin derivative Coal-water slurry Dispersant Adsorption
下载PDF
Water Requirements of Sugar Beet Beta vulgaris under Heavy Cracking Clay Soils
6
作者 Abdelhadi Abdel Wahab Ahmed Ali Salih 《Journal of Agricultural Science and Technology(B)》 2012年第8期865-874,共10页
Crop coefficients (Kc) of sugar beet were determined for accurate calculation of water requirements (CWR) and better irrigation water management. Three irrigation treatments were used during two seasons to measure... Crop coefficients (Kc) of sugar beet were determined for accurate calculation of water requirements (CWR) and better irrigation water management. Three irrigation treatments were used during two seasons to measure actual crop water use (ETc) under no soil stress treatment using gravimetric sampling. In the second season (SS), the method was modified to target 8 temporal points during crop growth for smooth calculation of ETc under sufficient moisture supply to avoid the distortion that was created by the continuous gravimetric sampling after, before and during each irrigation cycle on the experimental plots. Water was stopped when each targeted sampling point was reached using large plots where intensive sampling continues until the crop reaches severe water stress or permanent wilting point (PWP). The actual crop water use was extracted from the soil moisture depletion curve which allowed the identification of two clear segments. The first segment indicated crop water use during no water stress while the change of the slope indicated the beginning of the water stress. The reference crop evapotranspiration (ET0) was determined on daily basis using appropriate weather data that coincides with the ETc measurement and consequently the crop Kc were calculated. The results showed that the method used during the SS is easy and provides a better understanding of actual crop water use and better estimation of crop Kc. The calculated 10-day Kc values for sugar beet under heavy cracking clay soil conditions were: 0.46, 0.49, 0.53 and 0.60; for the initial stage: 0.69, 0.78, 0.88 and 0.97; for the development stage: 1.05, 1.11, 1.13, 1.11 and 1.04; for mid-season stage and for late season stage: 0.92, 0.74 and 0.60. Yield and other sugar related parameters were also presented for the two seasons. 展开更多
关键词 Sugar beet crop water requirements cracking clay gravimetric sampling.
下载PDF
Water Consumption of Seven Forage Cultivars under Different Climatic Conditions in the North China Plain 被引量:1
7
作者 潘国艳 欧阳竹 +2 位作者 罗群英 于强 王吉顺 《Journal of Resources and Ecology》 CSCD 2011年第1期74-82,共9页
The objectives of this study were to determine the characteristics of water consumption of seven forage cultivars, ryegrass (Secale cereale L.), triticale (×Triticosecale Wittmack), sorghum hybrid sudangrass ... The objectives of this study were to determine the characteristics of water consumption of seven forage cultivars, ryegrass (Secale cereale L.), triticale (×Triticosecale Wittmack), sorghum hybrid sudangrass (Sorghum biolor× Sorghum Sudanense c.v.), ensilage corn (Zea mays L.), prince’s feather (Amaranthus paniculatus L.), alfalfa (Medicago sativa L.), and cup plant (Silphium perfoliatum L.), in response to climate variability (especially precipitation). Field experiments were conducted at Yucheng Integrated Experiment Station from 2005 to 2009. Fifteen irrigated lysimeters were used to measure evapotranspiration (ET) and crop coefficient (Kc) of these seven forage varieties under ample water supply. The mean Kc for alfalfa is 1.08, and the mean Kc for other forage varieties ranges from 0.79 to 0.94. Kc for hibernating forage is higher in wet years than that in dry years, followed by normal years, while for annual forage, Kc is higher in dry years than in normal years, and is the lowest in wet years. For perennial varieties the order is normal years, dry years, and wet years. Among the annual varieties, ensilage corn is the first choice due to its highest average forage N yield and water use efficiency (WUE). Sorghum hybrid sudangrass is another forage cultivar that grows well under all climatic conditions. It can achieve 1.08-2.31 t ha-1 y-1 N yield under all circumstances. Prince’s feather is sensitive to climate change and its N yield dropped below half even when ample water was applied in dry and normal years. Ryegrass and triticale have the advantage of growing in the fallow phase after cotton is harvested in the North China Plain (NCP) and the latter performed better. For perennial varieties, alfalfa performed better than cup plant in dry years. With ample irrigation, alfalfa can achieve higher biomass and WUE under arid climate condition, but excessive rain caused reduction in production. 展开更多
关键词 forage cultivars EVAPOTRANSPIRATION crop coefficient water use efficiency climatic patterns
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部