期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
分数度量意义发展的认知根基及轨迹:分数图式进阶理论 被引量:9
1
作者 丁锐 卫冰倩 +2 位作者 Ron Tzur 田然 孙文娟 《数学教育学报》 CSSCI 北大核心 2021年第3期64-72,共9页
斯特芬(Steffe)、撒冷(Tzur)等人通过长期的质的建构主义教学实验研究,对西方儿童的分数学习轨迹进行了探索,提出的分数图式进阶理论为学生对分数度量意义理解的发展提供了认知依据.撒冷的"活动-效果关系"反省理论可以解释图... 斯特芬(Steffe)、撒冷(Tzur)等人通过长期的质的建构主义教学实验研究,对西方儿童的分数学习轨迹进行了探索,提出的分数图式进阶理论为学生对分数度量意义理解的发展提供了认知依据.撒冷的"活动-效果关系"反省理论可以解释图式的构建和转化机制,迭代和均分是分数图式构建的两种重要认知操作,而分数图式进阶模型共包括8个进阶水平,前4个图式主要基于迭代操作,后4个图式主要基于均分操作.总之,分数概念的本质不是"部分-整体",而是度量意义;学生的分数图式是对整数计数图式的顺应;迭代和均分操作能够促进学生对分数度量意义的理解. 展开更多
关键词 分数 分数图式 迭代操作 均分操作 度量意义
下载PDF
分数图式进阶模型有效性检验与学生表现分析 被引量:8
2
作者 孙文娟 丁锐 《数学教育学报》 CSSCI 北大核心 2022年第4期32-37,97,共7页
以分数图式进阶理论为理论基础,编制了分数图式进阶测评工具,对402名使用北师大版和人教版数学教材的六年级小学生的分数图式发展情况进行了分析.测验结果显示,该测验工具的质量较高,符合RASCH模型的单维性假设;中国小学生的分数推理的... 以分数图式进阶理论为理论基础,编制了分数图式进阶测评工具,对402名使用北师大版和人教版数学教材的六年级小学生的分数图式发展情况进行了分析.测验结果显示,该测验工具的质量较高,符合RASCH模型的单维性假设;中国小学生的分数推理的发展顺序与分数图式理论模型基本一致,在迭代分数图式以及分配均分图式两个阶段的发展与理论稍有差异;使用人教版的小学生在一部分分数图式阶段上的表现优于使用北师大版的学生.建议设计能够促进小学生分数图式发展的操作性游戏活动,并鼓励用合适的表征方式表达分数的度量意义以及运算过程,让学生真正理解分数的度量意义. 展开更多
关键词 分数图式 学习进阶 RASCH模型
下载PDF
小学生解决分数应用题认知加工过程的实验研究 被引量:5
3
作者 刘广珠 《心理发展与教育》 CSSCI 北大核心 1997年第3期9-12,共4页
本文采取个别交谈临床法研究了76名五、六年级小学生解决分数应用题认知加工的过程。结果表明:1.小学生解分数应用题认知加工可划分为三级水平;2.小学生解分数应用题的认知图式从分数图式发展到份总关系图式;3.分数认知图式... 本文采取个别交谈临床法研究了76名五、六年级小学生解决分数应用题认知加工的过程。结果表明:1.小学生解分数应用题认知加工可划分为三级水平;2.小学生解分数应用题的认知图式从分数图式发展到份总关系图式;3.分数认知图式的形成和发展受心理发展水平和教育的制约;4.问题表征和解题结果存在表征正确——结果正确、表征不完全正确——结果正确。 展开更多
关键词 认知加工 分数认知图式 兼容 小学生
下载PDF
The Star-Extremality of Circulant Graphs
4
作者 吴建专 许克祥 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期377-379,共3页
The circular chromatic number and the fractional chromatic number are two generalizations of the ordinary chromatic number of a graph. We say a graph G is star extremal if its circular chromatic number is equal to its... The circular chromatic number and the fractional chromatic number are two generalizations of the ordinary chromatic number of a graph. We say a graph G is star extremal if its circular chromatic number is equal to its fractional chromatic number. This paper gives an improvement of a theorem. And we show that several classes of circulant graphs are star extremal. 展开更多
关键词 circular chromatic number fractional chromatic number circulant graph star extremal graph
下载PDF
Circular Chromatic Numbers of Some Distance Graphs
5
作者 殷翔 吴建专 《Journal of Southeast University(English Edition)》 EI CAS 2001年第2期75-77,共3页
The circular chromatic number of a graph is an important parameter of a graph. The distance graph G(Z,D) , with a distance set D , is the infinite graph with vertex set Z={0,±1,±2,...} in which tw... The circular chromatic number of a graph is an important parameter of a graph. The distance graph G(Z,D) , with a distance set D , is the infinite graph with vertex set Z={0,±1,±2,...} in which two vertices x and y are adjacent iff y-x∈D . This paper determines the circular chromatic numbers of two classes of distance graphs G(Z,D m,k,k+1 ) and G(Z,D m,k,k+1,k+2 ). 展开更多
关键词 distance graph fractional chromatic number circular chromatic number
下载PDF
A Class of Star Extremal Circulant Graphs
6
作者 吴建专 宋增民 《Journal of Southeast University(English Edition)》 EI CAS 2002年第2期177-179,共3页
The circular chromatic number and the fractional chromatic number are two generalizations of the ordinary chromatic number of a graph. A graph is called star extremal if its fractional chromatic number equals to its c... The circular chromatic number and the fractional chromatic number are two generalizations of the ordinary chromatic number of a graph. A graph is called star extremal if its fractional chromatic number equals to its circular chromatic number (also known as the star chromatic number). This paper studies the star extremality of the circulant graphs whose generating sets are of the form {±1,±k} . 展开更多
关键词 circular chromatic number fractional chromatic number circulant graph star extremal graph
下载PDF
One Additive Diophantine Inequality with Mixed Powers 2 and 4 被引量:2
7
作者 龚克 李伟平 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2008年第1期1-7,共7页
In this paper, it is shown that: if λ1 ,……λs axe nonzero real numbers, not all of the same sign, such that A1/A2 is irrational, then for any real number η and ε 〉 0 the inequality |λ1x1^2 + λ2x2^2+ λ3x3^... In this paper, it is shown that: if λ1 ,……λs axe nonzero real numbers, not all of the same sign, such that A1/A2 is irrational, then for any real number η and ε 〉 0 the inequality |λ1x1^2 + λ2x2^2+ λ3x3^4+ λsx3^4+……λsx8^4 +η〈 ε has infinitely many solutions in positive integers x1,... ,xs. 展开更多
关键词 Diophantine inequality mixed powers circle method
下载PDF
Automatic recognition and quantitative analysis of Ω phases in Al-Cu-Mg-Ag alloy
8
作者 刘冰滨 谷艳霞 +1 位作者 刘志义 田小林 《Journal of Central South University》 SCIE EI CAS 2014年第5期1696-1704,共9页
The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as hi... The main methods of the second phase quantitative analysis in current material science researches are manual recognition and extracting by using software such as Image Tool and Nano Measurer. The weaknesses such as high labor intensity and low accuracy statistic results exist in these methods. In order to overcome the shortcomings of the current methods, the Ω phase in A1-Cu-Mg-Ag alloy is taken as the research object and an algorithm based on the digital image processing and pattern recognition is proposed and implemented to do the A1 alloy TEM (transmission electron microscope) digital images process and recognize and extract the information of the second phase in the result image automatically. The top-hat transformation of the mathematical morphology, as well as several imaging processing technologies has been used in the proposed algorithm. Thereinto, top-hat transformation is used for elimination of asymmetric illumination and doing Multi-layer filtering to segment Ω phase in the TEM image. The testing results are satisfied, which indicate that the Ω phase with unclear boundary or small size can be recognized by using this method. The omission of these two kinds of Ω phase can be avoided or significantly reduced. More Ω phases would be recognized (growing rate minimum to 2% and maximum to 400% in samples), accuracy of recognition and statistics results would be greatly improved by using this method. And the manual error can be eliminated. The procedure recognizing and making quantitative analysis of information in this method is automatically completed by the software. It can process one image, including recognition and quantitative analysis in 30 min, but the manual method such as using Image Tool or Nano Measurer need 2 h or more. The labor intensity is effectively reduced and the working efficiency is greatly improved. 展开更多
关键词 auto pattern recognition top-hat transformation second phases in A1 alloy quantitative analysis
下载PDF
The lower bound on independence number
9
作者 李雨生 CecilC.ROUSSEAU 臧文安 《Science China Mathematics》 SCIE 2002年第1期64-69,共6页
Let G be a graph with degree sequence ( dv). If the maximum degree of any subgraph induced by a neighborhood of G is at most m, then the independence number of G is at least $\sum\limits_v {f_{m + 1} \left( {d_v } \ri... Let G be a graph with degree sequence ( dv). If the maximum degree of any subgraph induced by a neighborhood of G is at most m, then the independence number of G is at least $\sum\limits_v {f_{m + 1} \left( {d_v } \right)} $ , where fm+1( x) is a function greater than $\frac{{log\left( {x/\left( {m + 1} \right)} \right) - 1}}{x}for x > 0$ for x> 0. For a weighted graph G = ( V, E, w), we prove that its weighted independence number (the maximum sum of the weights of an independent set in G) is at least $\sum\limits_v {\frac{{w_v }}{{1 + d_v }}} $ where wv is the weight of v. 展开更多
关键词 independence number discrete form weighted graph
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部