期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
求解非线性方程的双曲函数分数幂级数展开法(Ⅰ)
1
作者 那仁满都拉 乌恩宝音 《内蒙古民族大学学报(自然科学版)》 1994年第2期22-23,53,共3页
本文首次提出用双曲函数分数幂级数求解非线性成分方程的系统方法,并用此方法给出了重要而难以求解的方程u_(tt)—cu_(tt)+au+bu ̄(2m)=0的情确解析解.作为特例给出了Klein-Gordon方程的孤立波... 本文首次提出用双曲函数分数幂级数求解非线性成分方程的系统方法,并用此方法给出了重要而难以求解的方程u_(tt)—cu_(tt)+au+bu ̄(2m)=0的情确解析解.作为特例给出了Klein-Gordon方程的孤立波解和有心力场中非线性运动微分方程的精确解. 展开更多
关键词 双曲函数分数幂级数 精确解析解 孤立波解
下载PDF
分数微积分下Taylor公式的一种推广
2
作者 孙贺琦 《三明学院学报》 2008年第4期374-376,共3页
基于分数微积分理论,将分析学中的Taylor级数和Taylor公式推广于f=(x-a)νg,g∈Cω(I)型函数,并对得到的分数幂级数的系数关系和余项作了分析.
关键词 分数微积分 分数幂级数 TAYLOR公式 余项分析
下载PDF
Exact Solutions of Fractional-Order Biological Population Model 被引量:13
3
作者 A.M.A.El-Sayed S.Z.Rida A.A.M.Arafa 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第12期992-996,共5页
In this paper, the Adomian's decomposition method (ADM) is presented for finding the exact solutions of a more general biological population models. A new solution is constructed in power series. The fractional der... In this paper, the Adomian's decomposition method (ADM) is presented for finding the exact solutions of a more general biological population models. A new solution is constructed in power series. The fractional derivatives are described in the Caputo sense. To illustrate the reliability of the method, some examples are provided. 展开更多
关键词 biological populations model fractional Calculus decomposition method Mittag-Leffier function
下载PDF
基于时延的发射数字波束形成技术研究 被引量:4
4
作者 梁剑 《国外电子测量技术》 2020年第6期55-59,共5页
以线性相控阵雷达为研究对象,在宽带信号模式下,分析了常规的数字移相法实现数字波束时延不精确的原因,并针对该问题提出了基于时延的发射数字波束形成的设计方案。该方案中设计的重点是实现分数延时,采用双曲幂级数结构实现分数延时滤... 以线性相控阵雷达为研究对象,在宽带信号模式下,分析了常规的数字移相法实现数字波束时延不精确的原因,并针对该问题提出了基于时延的发射数字波束形成的设计方案。该方案中设计的重点是实现分数延时,采用双曲幂级数结构实现分数延时滤波器,并利用MATLAB对该分数延时滤波器进行测试,结果表明该滤波器能实现准确的延时。最后,利用宽带线性调频信号对整体方案进行仿真验证,结果证实了基于时延的发射数字波束形成方案的可行性。 展开更多
关键词 数字波束形成 双曲幂级数分数延时滤波器 MATLAB
下载PDF
The Degenerate Form of the Adomian Polynomials in the Power Series Method for Nonlinear Ordinary Differential Equations 被引量:2
5
作者 Jun-Sheng Duan Randolph Rach 《Journal of Mathematics and System Science》 2015年第10期411-428,共18页
In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable non... In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency. 展开更多
关键词 Power series method Adomian decomposition method Adomian polynomials Modified decomposition method Nonlinear differential equation
下载PDF
Lie Symmetry Analysis, Conservation Laws and Exact Power Series Solutions for Time-Fractional Fordy–Gibbons Equation 被引量:2
6
作者 冯连莉 田守富 +1 位作者 王秀彬 张田田 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第9期321-329,共9页
In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–K... In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method. 展开更多
关键词 time-fractional Fordy-Gibbons equation Lie symmetry method symmetry reduction exact solution conservation laws
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部