The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the co...The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the computing process is complex with many cycles, which has greatly affected the computing efficiency. To improve the computing efficiency, this paper introduces Gaussian integral to the numerical calculation of the frequency-domain Green function and its partial derivatives. It then compares the calculation result with that in existing references. The comparison results demonstrate that, on the basis of its sufficient accuracy, the method has greatly simplified the computing process, reduced the zoning and improved the computing efficiency.展开更多
In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable non...In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency.展开更多
In this paper,a necessary and sufficient condition for the existence of a kind of bivariate vector valued rational interpolants over rectangular grids is given.This criterion is an algebraic method,i.e.,by solving a s...In this paper,a necessary and sufficient condition for the existence of a kind of bivariate vector valued rational interpolants over rectangular grids is given.This criterion is an algebraic method,i.e.,by solving a system of equations based on the given data,we can directly test whether the relevant interpolant exists or not.By coming up with our method, the problem of how to deal with scalar equations and vector equations in the same system of equations is solved.After testing existence,an expression of the corresponding bivariate vector-valued rational interpolant can be constructed consequently.In addition,the way to get the expression is different from the one by making use of Thiele-type bivariate branched vector-valued continued fractions and Samelson inverse which are commonly used to construct the bivariate vector-valued rational interpolants.Compared with the Thiele-type method,the one given in this paper is more direct.Finally,some numerical examples are given to illustrate the result.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.50779007the National Science Foundation for Young Scientists of China under Grant No.50809018+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070217074the Defence Advance Research Program of Science and Technology of Ship Industry under Grant No.07J1.1.6Harbin Engineering University Foundation under Grant No.HEUFT07069
文摘The traditional calculation method of frequency-domain Green function mainly utilizes series or asymptotic expansion to carry out numerical approximation, however, this method requires very careful zoning, thus the computing process is complex with many cycles, which has greatly affected the computing efficiency. To improve the computing efficiency, this paper introduces Gaussian integral to the numerical calculation of the frequency-domain Green function and its partial derivatives. It then compares the calculation result with that in existing references. The comparison results demonstrate that, on the basis of its sufficient accuracy, the method has greatly simplified the computing process, reduced the zoning and improved the computing efficiency.
文摘In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency.
基金the National Natural Science Foundation of China (No. 60473114) the Natural Science Foundation of Auhui Province (No. 070416227)+2 种基金 the Natural Science Research Scheme of Education Department of Anhui Province (No. KJ2008B246) Colleges and Universities in Anhui Province Young Teachers Subsidy Scheme (No. 2008jq1110) the Science Research Foundation of Chaohu College (No. XLY-200705).
文摘In this paper,a necessary and sufficient condition for the existence of a kind of bivariate vector valued rational interpolants over rectangular grids is given.This criterion is an algebraic method,i.e.,by solving a system of equations based on the given data,we can directly test whether the relevant interpolant exists or not.By coming up with our method, the problem of how to deal with scalar equations and vector equations in the same system of equations is solved.After testing existence,an expression of the corresponding bivariate vector-valued rational interpolant can be constructed consequently.In addition,the way to get the expression is different from the one by making use of Thiele-type bivariate branched vector-valued continued fractions and Samelson inverse which are commonly used to construct the bivariate vector-valued rational interpolants.Compared with the Thiele-type method,the one given in this paper is more direct.Finally,some numerical examples are given to illustrate the result.