In this paper,the asymptotic stability with probability one of multi-degree-of-freedom(MDOF)nonlinear oscillators with fractional derivative damping parametrically excited by Gaussian white noises is investigated.A st...In this paper,the asymptotic stability with probability one of multi-degree-of-freedom(MDOF)nonlinear oscillators with fractional derivative damping parametrically excited by Gaussian white noises is investigated.A stochastic averaging method and the Khasminskii’s procedure are employed to evaluate the largest Lyapunov exponent,whose sign determines the stability of the system.As an example,two coupled nonlinear oscillators with fractional derivative damping is worked out to demonstrate the proposed procedure and to examine the effect of fractional order on the stochastic stability of system.In particular,the case of factional order more than 1 is studied for the first time.展开更多
The stochastic stability of the harmonically and randomly excited Duffing oscillator with damping modeled by a fractional derivative of Caputo's definition is analyzed.First,the system state is approximately descr...The stochastic stability of the harmonically and randomly excited Duffing oscillator with damping modeled by a fractional derivative of Caputo's definition is analyzed.First,the system state is approximately described by It equations through the stochastic averaging method based on the generalized harmonic function.Then,the associated expression for the largest Lyapunov exponent of the linearized averaged It is derived,and the necessary and sufficient condition for the asymptotic stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent be negative.The effects of fractional orders and random excitation intensities on the asymptotic stability with probability one determined by the largest Lyapunov exponent are shown graphically.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.10932009,11072212,11272279 and 11002059)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20103501120003)+1 种基金Fujian Province Natural Science Foundation of China(Grant No.2010J05006)Fundamental Research Funds for Huaqiao University(Grant No.JB-SJ1010)
文摘In this paper,the asymptotic stability with probability one of multi-degree-of-freedom(MDOF)nonlinear oscillators with fractional derivative damping parametrically excited by Gaussian white noises is investigated.A stochastic averaging method and the Khasminskii’s procedure are employed to evaluate the largest Lyapunov exponent,whose sign determines the stability of the system.As an example,two coupled nonlinear oscillators with fractional derivative damping is worked out to demonstrate the proposed procedure and to examine the effect of fractional order on the stochastic stability of system.In particular,the case of factional order more than 1 is studied for the first time.
基金supported by the National Natural Science Foundation of China(Grant Nos.10932009,11072212 and 11002059)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20103501120003)+2 种基金the Natural Science Foundation of Fujian Province (Grant No.2010J05006)the Fundamental Research Funds for Huaqiao University(Grant No.JB-SJ1010)the Research & Development Start Funds of Huaqiao University(Grant No.09BS622)
文摘The stochastic stability of the harmonically and randomly excited Duffing oscillator with damping modeled by a fractional derivative of Caputo's definition is analyzed.First,the system state is approximately described by It equations through the stochastic averaging method based on the generalized harmonic function.Then,the associated expression for the largest Lyapunov exponent of the linearized averaged It is derived,and the necessary and sufficient condition for the asymptotic stability with probability one of the trivial solution of the original system is obtained approximately by letting the largest Lyapunov exponent be negative.The effects of fractional orders and random excitation intensities on the asymptotic stability with probability one determined by the largest Lyapunov exponent are shown graphically.