由于锂离子电池的SOC(state of charge)不能直接被测得,目前只能通过电池外部输出特性对其进行估算。以磷酸铁锂电池为研究对象,考虑到电池各种复杂的非线性特征,分析了电池的电化学阻抗特性,采用恒相位元件(CPE)对传统的等效电路模型...由于锂离子电池的SOC(state of charge)不能直接被测得,目前只能通过电池外部输出特性对其进行估算。以磷酸铁锂电池为研究对象,考虑到电池各种复杂的非线性特征,分析了电池的电化学阻抗特性,采用恒相位元件(CPE)对传统的等效电路模型进行改进,建立了分数阶(fractional order)等效电路模型;联合遗传算法和混合脉冲动力试验对分数阶等效电路模型的参数进行离线识别;基于扩展卡尔曼滤波算法,建立了分数阶扩展卡尔曼滤波算法(fractional order extended Kalman Filter)的锂电池SOC估算模型;根据动态应力试验DST(dynamic stress test)工况设计制定了锂电池充放电方案,在环境温度25℃条件下,实时采集电池电流及电压数据,将采集所得数据输入到Matlab建立的模型中,对目标电池进行SOC估算。仿真结果表明:与二阶戴维南电路模型SOC仿真结果相比,基于FEKF算法的SOC估算结果具有更高的精度且波动性更小,误差均小于0.72%,均方根误差仅为0.24%。展开更多
准确估算并合理利用电池的荷电状态(state of charge,SOC)与健康状态(state of health,SOH)可以延长电池的使用寿命。为了实现准确的SOC-SOH在线估计,在扩展卡尔曼滤波的基础上,采用多尺度并行扩展卡尔曼滤波估计算法(multi-scale doubl...准确估算并合理利用电池的荷电状态(state of charge,SOC)与健康状态(state of health,SOH)可以延长电池的使用寿命。为了实现准确的SOC-SOH在线估计,在扩展卡尔曼滤波的基础上,采用多尺度并行扩展卡尔曼滤波估计算法(multi-scale double extended Kalman filter,MDEKF)提高估计精度。在建立电池2阶RC等效电路模型上,利用最小二乘法对模型参数进行辨识,设计并行结构的滤波器进行电池SOC估计和参数修正,并以电池组容量值作为表征量对SOH进行估算。仿真实验结果表明,SOC估计误差由1.43%降低到1.10%,SOH估计结果稳定在0.5%以内,验证了算法的快速收敛性和实时性。展开更多
文摘由于锂离子电池的SOC(state of charge)不能直接被测得,目前只能通过电池外部输出特性对其进行估算。以磷酸铁锂电池为研究对象,考虑到电池各种复杂的非线性特征,分析了电池的电化学阻抗特性,采用恒相位元件(CPE)对传统的等效电路模型进行改进,建立了分数阶(fractional order)等效电路模型;联合遗传算法和混合脉冲动力试验对分数阶等效电路模型的参数进行离线识别;基于扩展卡尔曼滤波算法,建立了分数阶扩展卡尔曼滤波算法(fractional order extended Kalman Filter)的锂电池SOC估算模型;根据动态应力试验DST(dynamic stress test)工况设计制定了锂电池充放电方案,在环境温度25℃条件下,实时采集电池电流及电压数据,将采集所得数据输入到Matlab建立的模型中,对目标电池进行SOC估算。仿真结果表明:与二阶戴维南电路模型SOC仿真结果相比,基于FEKF算法的SOC估算结果具有更高的精度且波动性更小,误差均小于0.72%,均方根误差仅为0.24%。
文摘准确估算并合理利用电池的荷电状态(state of charge,SOC)与健康状态(state of health,SOH)可以延长电池的使用寿命。为了实现准确的SOC-SOH在线估计,在扩展卡尔曼滤波的基础上,采用多尺度并行扩展卡尔曼滤波估计算法(multi-scale double extended Kalman filter,MDEKF)提高估计精度。在建立电池2阶RC等效电路模型上,利用最小二乘法对模型参数进行辨识,设计并行结构的滤波器进行电池SOC估计和参数修正,并以电池组容量值作为表征量对SOH进行估算。仿真实验结果表明,SOC估计误差由1.43%降低到1.10%,SOH估计结果稳定在0.5%以内,验证了算法的快速收敛性和实时性。