期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
有限区间上的分数阶扩散-波方程定解问题与Laplace变换 被引量:9
1
作者 段俊生 徐明瑜 《高校应用数学学报(A辑)》 CSCD 北大核心 2004年第2期165-171,共7页
求解了如下的分数阶扩散-波方程定解问题0Dαtu=2ux2,0<x<1,t>0,0<α≤2,u(0,t;α)=0,u(1,t;α)=θ(t),u(x,0+;α)=0,当1<α≤2时,还有ut(x,0+;α)=0.其中θ(t)是Heaviside单位阶跃函数,0Dαt为关于时间t的α阶Caput... 求解了如下的分数阶扩散-波方程定解问题0Dαtu=2ux2,0<x<1,t>0,0<α≤2,u(0,t;α)=0,u(1,t;α)=θ(t),u(x,0+;α)=0,当1<α≤2时,还有ut(x,0+;α)=0.其中θ(t)是Heaviside单位阶跃函数,0Dαt为关于时间t的α阶Caputo分数阶导数算子,u=u(x,t;α)为时间t的因果函数(即t<0时恒为零的函数).利用Laplace变换的复围道积分反演和离散化反演及FoxH函数理论,给出在计算上对大的t和小的t分别适用的解的表达式. 展开更多
关键词 CAPUTO分数导数 LAPLACE变换 FOX H函数 分数阶扩散-波方程
下载PDF
有限区间上的分数阶扩散-波方程混合问题
2
作者 朱波 韩宝燕 《临沂师范学院学报》 2006年第3期26-28,66,共4页
利用分离变量法,Laplace变换及广义Mittage-Leffler函数,给出了有限区间上分数阶扩散-波方程混合问题的精确解.
关键词 Riemann-Liouville(R—L)分数导数 分数阶扩散-波方程 分离变量 LAPLACE变换 广义Mittage-Leffler函数
下载PDF
有限区间上的分数阶扩散波方程的解 被引量:6
3
作者 张淑琴 《西北师范大学学报(自然科学版)》 CAS 2005年第2期10-13,共4页
考虑如下的分数阶扩散 波方程:Dαtu(t,x) = a2Dβxu(t,x), t >0,0< x < l,0<α≤2,0<β≤2,u(0,t) =0, u(l,t) =θ(t), t≥0,u(0,x) =φ(x), 0≤x≤ l(如果0<α≤1),ut(0,x) =0, 0≤x≤ l(如果1<α≤2).其中... 考虑如下的分数阶扩散 波方程:Dαtu(t,x) = a2Dβxu(t,x), t >0,0< x < l,0<α≤2,0<β≤2,u(0,t) =0, u(l,t) =θ(t), t≥0,u(0,x) =φ(x), 0≤x≤ l(如果0<α≤1),ut(0,x) =0, 0≤x≤ l(如果1<α≤2).其中Dαt 和Dβx 分别为关于时间t 和空间x 的α次、β次 Caputo分数次算子, θ(t)为给定的函数. 利用 Dαt 和 Dβx 的变换, 给出该问题的解的表达式. 展开更多
关键词 分数次导数 分数阶扩散-波方程 LAPLACE变换 Mittag-Leffler函数
下载PDF
求解四阶多项时间分数阶混合扩散-波方程的二阶差分格式
4
作者 高广花 徐鹏 《扬州大学学报(自然科学版)》 CAS 北大核心 2022年第4期24-35,共12页
为求解二维四阶多项时间分数阶混合扩散-波方程,基于降阶法将时间分数阶扩散项和分数阶波动项分别转换为时间分数阶积分项和扩散项,并在时间方向分别应用L2-1公式和分片线性插值方法进行离散,对空间四阶导数项也进行降阶处理,建立差分... 为求解二维四阶多项时间分数阶混合扩散-波方程,基于降阶法将时间分数阶扩散项和分数阶波动项分别转换为时间分数阶积分项和扩散项,并在时间方向分别应用L2-1公式和分片线性插值方法进行离散,对空间四阶导数项也进行降阶处理,建立差分求解格式.利用能量分析法对所得格式的稳定性和收敛性进行严格分析,结果显示其无条件稳定且在时间和空间方向上都是二阶收敛.数值算例证实所得数值格式的精度和有效性. 展开更多
关键词 多项时间分数混合扩散-方程 差分格式 稳定性 收敛性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部