期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
基于常分数阶拉普拉斯算子的黏声方程重建速度与衰减参数的全波形反演方法 被引量:2
1
作者 胡博涛 黄超 +1 位作者 董良国 张建明 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2023年第5期2123-2137,共15页
地震波在地下介质传播过程中由于非弹性衰减的存在将导致能量损失和相位变化,精确的速度与衰减参数建模对油气识别、提高强衰减介质中地震波成像的质量都起着至关重要的作用.常分数阶拉普拉斯算子黏声方程由于完全分离的速度频散项与振... 地震波在地下介质传播过程中由于非弹性衰减的存在将导致能量损失和相位变化,精确的速度与衰减参数建模对油气识别、提高强衰减介质中地震波成像的质量都起着至关重要的作用.常分数阶拉普拉斯算子黏声方程由于完全分离的速度频散项与振幅衰减项的优势,以及在强非均质衰减介质中可以高精度求解的特点,已被应用于速度与衰减参数的建模中.本文将二阶常分数阶拉普拉斯算子黏声方程拆分为等价的一阶方程组,并在此一阶方程组的基础上推导出新的梯度公式与伴随方程,建立了一种新的速度与衰减参数同时重建的全波形反演方法.相较于原二阶常分数阶拉普拉斯算子黏声方程建立的全波形反演流程,数值实验表明,新建立的反演流程可以有效避免原梯度数值计算中的噪声,尤其是可以有效提高衰减参数梯度的反演精度,从而显著提高反演的收敛速度与反演精度. 展开更多
关键词 品质因子 分数阶拉普拉斯算子 全波形反演 黏声方程
下载PDF
基于分数阶拉普拉斯算子解耦的黏声介质地震正演模拟与逆时偏移 被引量:21
2
作者 吴玉 符力耘 陈高祥 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2017年第4期1527-1537,共11页
时间域常Q黏声波方程,由于含分数阶时间导数项,数值求解需要大量内存,计算效率低,不利于地震偏移的实施.通过一系列近似,可将该方程简化为介质频散效应和衰减效应解耦的分数阶拉普拉斯算子黏声波方程,数值求解内存需求少,计算效率高.本... 时间域常Q黏声波方程,由于含分数阶时间导数项,数值求解需要大量内存,计算效率低,不利于地震偏移的实施.通过一系列近似,可将该方程简化为介质频散效应和衰减效应解耦的分数阶拉普拉斯算子黏声波方程,数值求解内存需求少,计算效率高.本文采用交错网格有限差分逼近时间导数,改进的伪谱法计算空间导数,PML吸收边界去除边界反射,对该方程进行数值离散和地震正演模拟,开展地震数据的黏声介质逆时偏移,实现波场逆时延拓过程中同时完成频散校正和衰减补偿.改善深层构造的成像精度,数值结果表明,基于分数阶拉普拉斯算子解耦的黏声介质地震正演模拟与逆时偏移可大幅度提高地震模拟计算效率,偏移剖面明显优于常规声波偏移剖面,极大改善深层构造的成像品质. 展开更多
关键词 时间域常Q黏声波方程 分数阶拉普拉斯算子 频散与衰减解耦 黏声介质地震模拟与逆时偏移
下载PDF
分数阶拉普拉斯算子黏滞声波方程的最小二乘逆时偏移 被引量:13
3
作者 陈汉明 周辉 田玉昆 《石油地球物理勘探》 EI CSCD 北大核心 2020年第3期616-626,471-472,共13页
衰减补偿型逆时偏移方法能沿波的传播路径对地震波所经历的振幅衰减和相位畸变进行补偿,可提高成像精度和分辨率,但该方法需模拟呈指数增长的地震波场,存在数值不稳定问题。为此,在最小二乘反演理论框架下,基于分数阶拉普拉斯算子黏滞... 衰减补偿型逆时偏移方法能沿波的传播路径对地震波所经历的振幅衰减和相位畸变进行补偿,可提高成像精度和分辨率,但该方法需模拟呈指数增长的地震波场,存在数值不稳定问题。为此,在最小二乘反演理论框架下,基于分数阶拉普拉斯算子黏滞声波方程,推导其对应的Born正演模拟算子和伴随方程,利用反演思路逐步补偿地震波的吸收衰减,解决了传统衰减补偿型逆时偏移方法的不稳定问题。该最小二乘逆时偏移方法采用新颖的常分数阶拉普拉斯算子黏滞声波方程描述地震波的衰减和频散,与实际广泛使用的常Q模型匹配精度高;在反演算法方面,使用限域拟牛顿(L-BFGS)方法计算反射率模型的更新量。Marmousi模型数据和实际数据的偏移算例证实,所提黏滞声波最小二乘逆时偏移方法能稳定地补偿介质的黏滞性,获得高分辨率的地下反射率模型。 展开更多
关键词 最小二乘逆时偏移 分数阶拉普拉斯算子 黏滞声波 地震成像
下载PDF
一类具临界指数的分数阶拉普拉斯方程对称解的存在性 被引量:2
4
作者 沈慧 王桂云 沈自飞 《浙江师范大学学报(自然科学版)》 CAS 2015年第4期379-386,共8页
研究了一类分数阶拉普拉斯方程(-Δ)'u+u=|u|^(2*(s)-2)u+f(x,u),x∈R^N解的存在性问题.其中,2*(s)=2N/(N-2s),N>2s,s∈(0,1),函数f:R^N×R→R对于u次临界增长.运用变分方法建立了方程对称解的存在性定理.
关键词 分数阶拉普拉斯算子 变分法 临界非线性 对称解
下载PDF
分数阶拉普拉斯方程的一种新型有限差分方法 被引量:3
5
作者 王静 张晓平 《数学杂志》 2021年第6期549-561,共13页
本文首先构造了分数阶拉普拉斯算子的一种新型积分公式,并给出了相应的误差估计.基于该积分公式,我们设计了一种求解分数阶拉普拉斯方程的新型有限差分格式,并得到了该格式的最优误差分析.最后通过一些数值实验验证了格式的高效性和理... 本文首先构造了分数阶拉普拉斯算子的一种新型积分公式,并给出了相应的误差估计.基于该积分公式,我们设计了一种求解分数阶拉普拉斯方程的新型有限差分格式,并得到了该格式的最优误差分析.最后通过一些数值实验验证了格式的高效性和理论分析的正确性. 展开更多
关键词 分数阶拉普拉斯方程 有限差分方法 数值积分公式 误差分析
下载PDF
Caputo型分数阶拉普拉斯发展方程的有限元分析
6
作者 胡晔 《吕梁学院学报》 2019年第2期6-9,共4页
物理上分数阶拉普拉斯算子被称为分数阶扩散通量,用于刻画列维飞行下粒子长距跳跃的反常扩散过程,考虑了长时间积分下,具有渐进性解的时间分数阶导数在加权空间的几个性质和泛函空间的等价性,并研究了长时间积分下有限元方法.
关键词 分数阶拉普拉斯 Caffarelli-Silvestre延拓 有限元方法 分数导数
下载PDF
分数阶p-拉普拉斯抛物方程解的单调性和对称性
7
作者 黄洪鸿 钟延生 《福建师范大学学报(自然科学版)》 CAS 北大核心 2024年第2期83-89,共7页
讨论有界域上分数阶p-拉普拉斯抛物方程,应用移动平面法,得到了该方程有界正解关于分变量x_(1)∈(-∞,0]单调递增,进而证明其关于超平面T_(0)■{x∈R^(n)|x_(1)=0}对称。
关键词 移动平面法 分数p-拉普拉斯 对称性 单调性
下载PDF
分数阶拉普拉斯方程解的一个有趣性质 被引量:1
8
作者 田巧玉 《数学的实践与认识》 2022年第2期221-226,共6页
设u_(1)(x)和u_(2)(x)分别是分数阶拉普拉斯方程在区域{x∈R^(N):|x|<L}和{x∈R^(N):|x|>l}的解,其中0<l<L.研究分段函数函数u(x)所满足的不等式,u(x)的定义见正文的(3).特别地,当u_(1)(x)和u_(2)(x)分别是非局部调和函数时... 设u_(1)(x)和u_(2)(x)分别是分数阶拉普拉斯方程在区域{x∈R^(N):|x|<L}和{x∈R^(N):|x|>l}的解,其中0<l<L.研究分段函数函数u(x)所满足的不等式,u(x)的定义见正文的(3).特别地,当u_(1)(x)和u_(2)(x)分别是非局部调和函数时,给出u(x)是下调和函数的充分条件.该结果表明分数阶拉普拉斯算子的非局部性对方程解的性质具有重要的影响. 展开更多
关键词 分数阶拉普拉斯 非局部性 调和函数
原文传递
一类分数阶p(x)-拉普拉斯方程的多重解 被引量:3
9
作者 张申贵 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2020年第5期535-540,共6页
利用临界点理论、变分方法和分数阶变指数Sobolev空间理论,研究带有非局部系数的分数阶p(x)-拉普拉斯方程边值问题的可解性。当非线性项在零点附近次线性或在无穷远处局部超线性增长时,得到了此类问题多重解存在的充分条件。
关键词 分数p(x)-拉普拉斯方程 临界点 次线性 超线性
下载PDF
分数阶拉普拉斯算子指数非线性热方程的局部适定性解 被引量:1
10
作者 汪庆康 《数学进展》 CSCD 北大核心 2021年第1期125-136,共12页
本文研究了分数阶拉普拉斯算子指数非线性热方程的柯西问题.将expL_(0)^(p)_(o)(R^(n))中的初始条件分解成光滑部分和exp L^(p)(R^(n))中的很小部分,得到了Orlicz空间exp L^(p)(R^(n))中的局部适定性解.
关键词 ORLICZ空间 FOURIER变换 分数阶拉普拉斯算子 局部适定性
原文传递
一类Kirchhoff型分数阶p-拉普拉斯方程无穷解的存在性 被引量:6
11
作者 刘晓琪 欧增奇 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第4期70-75,共6页
利用对称山路引理研究带有超线性非线性项的Kirchhoff型分数阶p-拉普拉斯方程,获得了该方程无穷个解的存在性.
关键词 Kirchhoff型方程 分数p-拉普拉斯 无穷个解 对称山路引理
下载PDF
一般加性噪声扰动的分数阶随机复Ginzburg-Landau方程解的适定性
12
作者 刘爱丽 任蝶 +1 位作者 邹艳艳 舒级 《四川师范大学学报(自然科学版)》 CAS 2024年第5期682-688,共7页
证明带有一般加性噪声的分数阶复Ginzburg-Landau方程解的存在性与唯一性.首先通过一族正则函数逼近原方程,然后再建立逼近解的一致估计,最后再通过极限过程证明方程的存在性和唯一性.
关键词 GINZBURG-LANDAU方程 一般加性噪声 分数阶拉普拉斯算子 适定性
下载PDF
变分数阶粘弹波动方程最小二乘快速解法 被引量:1
13
作者 赵强 朱成宏 +1 位作者 姜大建 魏哲枫 《石油物探》 CSCD 北大核心 2023年第2期258-270,共13页
由于分数阶粘弹波动方程存在变分数阶拉普拉斯算子,其数值求解需要对不同品质因子的空间任意点均进行全域的正反傅里叶变换,因而计算量巨大,难以满足实际生产需求。通过引入最小二乘理论,构建变分数阶空间波数混合域算子与波数域算子间... 由于分数阶粘弹波动方程存在变分数阶拉普拉斯算子,其数值求解需要对不同品质因子的空间任意点均进行全域的正反傅里叶变换,因而计算量巨大,难以满足实际生产需求。通过引入最小二乘理论,构建变分数阶空间波数混合域算子与波数域算子间的逼近关系,将空间波数混合域变分数阶算子分解为波数域常分数阶算子与空间域算子的形式,有效避免直接求取空间波数混合域算子时计算量大的问题,从而构建变分数阶粘弹波动方程的常分数阶求解形式,实现变分数阶粘弹波动方程快速求解。数值模拟计算结果表明,在品质因子非均值的情况下,该方法的计算精度优于平均品质因子模拟方法,计算量小于分块模拟方法,且提速比随着地下品质因子复杂度的提高而更加明显,在保证精度的前提下可大幅提高粘弹波场模拟效率,有利于后续相应高效粘弹成像算法的开发。 展开更多
关键词 粘弹波场数值模拟 分数阶拉普拉斯算子 粘弹波动方程 最小二乘理论 空间波数混合域算子 品质因子 计算效率
下载PDF
分数阶p-拉普拉斯问题在有拓扑结构的域上的多解
14
作者 乔花玲 唐素芳 《数学进展》 CSCD 北大核心 2023年第1期111-132,共22页
本文研究了分数阶p-拉普拉斯问题{(-△)_(p)^(s)u=μ|u|^(q-2)u+|u|^(p^(*)_(s)-2_(u)),x∈Ω,u=0,x∈R^(N)/Ω,其中Ω■R^(N)是有连续边界的有界开区域,N>ps,s∈(0,1),(一△)_(p)^(s)是分数阶p-拉普拉斯算子,μ是正的实参数,1<q&... 本文研究了分数阶p-拉普拉斯问题{(-△)_(p)^(s)u=μ|u|^(q-2)u+|u|^(p^(*)_(s)-2_(u)),x∈Ω,u=0,x∈R^(N)/Ω,其中Ω■R^(N)是有连续边界的有界开区域,N>ps,s∈(0,1),(一△)_(p)^(s)是分数阶p-拉普拉斯算子,μ是正的实参数,1<q<∞,q∈[p,p^(*)_(s)),p^(*)_(s)=Np/N-ps是分数阶Sobolev临界指数.本文应用Lusternik-Schnirelmann定理,证明了当q=p,N≥p^(2)s或q∈(p,p^(*)_(s)),N>(p(q+1)s)/(q-p+1)时,分数阶p-拉普拉斯问题在有拓扑结构的有界开区域上至少存在catΩ(Ω)个非平凡解. 展开更多
关键词 分数p-拉普拉斯算子 多解 临界SOBOLEV指数 Lusternik-Schnirelmann定理
原文传递
带Hardy项和一般非线性项分数阶椭圆方程的移动平面法
15
作者 张晓亚 《应用数学进展》 2023年第9期3804-3813,共10页
本文应用直接移动平面法,研究带Hardy项的分数阶拉普拉斯方程的正解的对称性和单调性。首先,关于某一点作Kelvin变换,然后建立了狭窄区域上的极值原理和无穷远处衰减原理,利用这一原理和移动平面法得到正解关于某一点对称并且关于这一... 本文应用直接移动平面法,研究带Hardy项的分数阶拉普拉斯方程的正解的对称性和单调性。首先,关于某一点作Kelvin变换,然后建立了狭窄区域上的极值原理和无穷远处衰减原理,利用这一原理和移动平面法得到正解关于某一点对称并且关于这一点先增后减的结果。 展开更多
关键词 Hardy项 分数阶拉普拉斯方程 移动平面法
下载PDF
分数阶耦合非线性Schrdinger方程组的山路解 被引量:2
16
作者 魏公明 李青 《数学物理学报(A辑)》 CSCD 北大核心 2016年第1期65-79,共15页
该文研究一类非线性分数阶Schrdinger方程组Dirichlet问题非平凡解的存在性.所用主要工具是分数阶Sobolev空间上的山路引理.要点是证明PS条件及该方程组的山路解是非平凡的.
关键词 分数阶拉普拉斯算子 临界点 山路引理 PS条件 极小能量解
下载PDF
一阶速度-压力常分数阶黏滞声波方程及其数值模拟 被引量:12
17
作者 陈汉明 汪燚林 周辉 《石油地球物理勘探》 EI CSCD 北大核心 2020年第2期302-310,I0003,共10页
与传统的整数阶黏滞波动方程相比,分数阶拉普拉斯算子黏滞方程能更准确地匹配目前广泛使用的常Q模型,而且分数阶黏滞波动方程中控制振幅衰减和相位变化的算子是显式分离的,这对于发展稳定的衰减补偿逆时偏移算法至关重要。首先基于时间... 与传统的整数阶黏滞波动方程相比,分数阶拉普拉斯算子黏滞方程能更准确地匹配目前广泛使用的常Q模型,而且分数阶黏滞波动方程中控制振幅衰减和相位变化的算子是显式分离的,这对于发展稳定的衰减补偿逆时偏移算法至关重要。首先基于时间域二阶位移形式的常分数阶拉普拉斯算子黏滞声波方程,推导了一阶速度-压力形式常分数阶拉普拉斯算子黏滞声波方程;为了模拟更加真实的振幅变化信息,在新的黏滞声波方程中考虑了密度空变的影响;为了避免由傅里叶变换的周期性而引入的虚假反射,提出了一种适用于分数阶黏滞声波方程的卷积型完全匹配层(CPML)吸收边界加载方法;最后采用交错网格伪谱法进行数值模拟。均匀介质中数值解与解析解的对比证实了该一阶速度-压力常分数阶黏滞声波方程能准确描述常Q模型,BP盐丘模型的地震波场模拟结果证实了其对复杂介质的适用性。 展开更多
关键词 黏滞声波方程 数值模拟 分数阶拉普拉斯算子 交错网格 伪谱法 完全匹配层
下载PDF
奇异分数阶Laplacian问题(英文) 被引量:1
18
作者 王兴 秦新强 +1 位作者 胡钢 卫国 《纯粹数学与应用数学》 2018年第4期431-440,共10页
研究了含有奇异项的分数阶Laplacian问题.证明了当参数较小时,奇异椭圆问题正弱解的存在性及多重性.尤其,在本文的结果中检验函数不需要具有紧支集,其方法可用于证明其他奇异分数阶问题正弱解的存在性.
关键词 拓扑 分数阶拉普拉斯 不可微泛函
下载PDF
分数阶薛定谔方程的平均向量场方法 被引量:1
19
作者 孔嘉萌 孙建强 刘莹 《西北师范大学学报(自然科学版)》 CAS 北大核心 2020年第2期21-25,44,共6页
基于二阶平均向量场方法和傅里叶谱方法构造了分数阶薛定谔方程的哈密尔顿保结构格式,并利用新格式数值模拟方程的演化行为.结果表明分数阶薛定谔方程的新格式具有二阶精度,且可以精确地保持方程的能量和质量守恒特性.
关键词 哈密尔顿保能量格式 平均向量场方法 分数薛定谔方程 傅里叶伪谱方法 分数阶拉普拉斯算子
下载PDF
与由分数阶Laplace算子生成的热半群相关的微分变换算子的有界性
20
作者 曹菁菁 任新宇 +1 位作者 毕学文 张超 《数学物理学报(A辑)》 CSCD 北大核心 2022年第5期1332-1347,共16页
该文分析了如下类型无穷级数的收敛性T_(N)f(x)=∑j=N_(1)N_(2)v_(j)[e−a_(j)+1(−Δ)^(α)f(x)−e−a_(j)(−Δ)^(α)f(x)],x∈Rn,其中{e−t(−Δ)^(α)}t>0为由分数阶Laplace算子(−Δ)^(α)生成的热半群(0<α<1),N=(N_(1),N_(2))∈... 该文分析了如下类型无穷级数的收敛性T_(N)f(x)=∑j=N_(1)N_(2)v_(j)[e−a_(j)+1(−Δ)^(α)f(x)−e−a_(j)(−Δ)^(α)f(x)],x∈Rn,其中{e−t(−Δ)^(α)}t>0为由分数阶Laplace算子(−Δ)^(α)生成的热半群(0<α<1),N=(N_(1),N_(2))∈Z^(2)(N_(1)<N_(2)),{v_(j)}j∈Z为有界实数列,{a_(j)}j∈Z为递增正数列.该文给出了算子T_(N)和其极大算子T∗f(x)=supN|T_(N)f(x)|在Lp空间和BMO空间上的有界性,从而得到该无穷级数的收敛性.同时,还给出了该微分变换算子的极大算子T∗f(x)的局部增长性估计. 展开更多
关键词 微分变换 热半群 分数阶拉普拉斯算子 极大算子 缺项数列
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部