为增强模块化多电平换流器(modular multilevel converter,MMC)在电网不平衡条件下的系统性能,该文提出一种分数阶积分滑模控制(fractional order integral sliding mode control,FO‐I‐SMC)策略。首先,分析MMC的拓扑结构,并推导出正...为增强模块化多电平换流器(modular multilevel converter,MMC)在电网不平衡条件下的系统性能,该文提出一种分数阶积分滑模控制(fractional order integral sliding mode control,FO‐I‐SMC)策略。首先,分析MMC的拓扑结构,并推导出正、负序电压与输出电流的基频外特性方程和正负零序环流的二倍频内特性方程。其次,结合控制目标和MMC的数学模型,设计出应用于电网电压不平衡的分数阶滑模控制器。该控制器旨在降低交流侧输出电流与直流侧环流谐波含量。最后,在MATLAB/Simulink仿真平台建立相应模型,验证该算法的有效性。研究结果证明:采用FO‐I‐SMC控制策略的MMC的系统性能要明显优于采用比例积分(proportional integral,PI)控制策略和积分滑模控制(integral sliding mode control,ISMC)策略的。展开更多
In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)st...In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)strategy is developed for PMSM drive system by means of fractional order sliding mode observer(FOSMO).Based on FOISMC technology,a fractional order integral sliding mode regulator(FOISM-based regulator)is designed,and a global integral sliding mode surface design method is presented,which can guarantee the global robustness of the system.Combining fractional order theory and sliding mode control theory,the FOSMO is constructed to achieve better identification accuracy of the speed and rotor position.Meanwhile the sliding mode load observer is used to observe the load torque in real time,and the observed value is transmitted to speed regulator to improve the capability of accommodating the challenge of load disturbance.Simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
In order to improve the control performance of industrial robotic arms,an efficient fractional-order iterative sliding mode control method is proposed by combining fractional calculus theory with iterative learning co...In order to improve the control performance of industrial robotic arms,an efficient fractional-order iterative sliding mode control method is proposed by combining fractional calculus theory with iterative learning control and sliding mode control.In the design process of the controller,fractional approaching law and fractional sliding mode control theories are used to introduce fractional calculus into iterative sliding mode control,and Lyapunov theory is used to analyze the system stability.Then taking a two-joint robotic arm as an example,the proposed control strategy is verified by MATLAB simulation.The simulation experiments show that the fractional-order iterative sliding mode control strategy can effectively improve the tracking speed and tracking accuracy of the joint,reduce the tracking error,have strong robustness and effectively suppress the chattering phenomenon of sliding mode control.展开更多
基金National Natural Science Foundation of China(No.1461023)Gansu Provincial Education Department Project(No.2016B-036)Changjiang Scholars and Innovative Research Team(No.RT_16R36)
文摘In view of the variation of system parameters and external load disturbance affecting the high-performance control of permanent magnet synchronous motor(PMSM),a fractional order integral sliding mode control(FOISMC)strategy is developed for PMSM drive system by means of fractional order sliding mode observer(FOSMO).Based on FOISMC technology,a fractional order integral sliding mode regulator(FOISM-based regulator)is designed,and a global integral sliding mode surface design method is presented,which can guarantee the global robustness of the system.Combining fractional order theory and sliding mode control theory,the FOSMO is constructed to achieve better identification accuracy of the speed and rotor position.Meanwhile the sliding mode load observer is used to observe the load torque in real time,and the observed value is transmitted to speed regulator to improve the capability of accommodating the challenge of load disturbance.Simulation results validate the feasibility and effectiveness of the proposed scheme.
基金National Natural Science Foundation of China(No.61663022)Department of Education Project of Gansu Province(No.18JR3RA105)。
文摘In order to improve the control performance of industrial robotic arms,an efficient fractional-order iterative sliding mode control method is proposed by combining fractional calculus theory with iterative learning control and sliding mode control.In the design process of the controller,fractional approaching law and fractional sliding mode control theories are used to introduce fractional calculus into iterative sliding mode control,and Lyapunov theory is used to analyze the system stability.Then taking a two-joint robotic arm as an example,the proposed control strategy is verified by MATLAB simulation.The simulation experiments show that the fractional-order iterative sliding mode control strategy can effectively improve the tracking speed and tracking accuracy of the joint,reduce the tracking error,have strong robustness and effectively suppress the chattering phenomenon of sliding mode control.