The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for tho...The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method.展开更多
In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight ...In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight classical test functions,and compared with the POS algorithm with adaptive time varying accelerators(ACPSO),the genetic algorithm(GA),a d the improved PSO algorithm with passive congregation(IPSO).Based on the systems with known model structures a d unknown model structures,the proposed algorithm is adopted to identify two typical fractional-order models.The results of parameter identification show that the application of average value of position information is beneficial to making f 11 use of the information exchange among individuals and speeds up the global searching speed.By introducing the uniformity and ergodicity of Tent mapping,the MPSO avoids the extreme v^ue of position information,so as not to fall into the local optimal value.In brief the MPSOalgorithm is an effective a d useful method with a fast convergence rate and high accuracy.展开更多
文摘The state-space representation of linear time-invariant (LTI) fractional order systems is introduced, and a proof of their stability theory is also given. Then an efficient identification algorithm is proposed for those fractional order systems. The basic idea of the algorithm is to compute fractional derivatives and the filter simultaneously, i.e., the filtered fractional derivatives can be obtained by computing them in one step, and then system identification can be fulfilled by the least square method. The instrumental variable method is also used in the identification of fractional order systems. In this way, even if there is colored noise in the systems, the unbiased estimation of the parameters can still be obtained. Finally an example of identifying a viscoelastic system is given to show the effectiveness of the aforementioned method.
基金The National Natural Science Foundation of China(No.61374153,61473138,61374133)the Natural Science Foundation of Jiangsu Province(No.BK20151130)+1 种基金Six Talent Peaks Project in Jiangsu Province(No.2015-DZXX-011)China Scholarship Council Fund(No.201606845005)
文摘In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight classical test functions,and compared with the POS algorithm with adaptive time varying accelerators(ACPSO),the genetic algorithm(GA),a d the improved PSO algorithm with passive congregation(IPSO).Based on the systems with known model structures a d unknown model structures,the proposed algorithm is adopted to identify two typical fractional-order models.The results of parameter identification show that the application of average value of position information is beneficial to making f 11 use of the information exchange among individuals and speeds up the global searching speed.By introducing the uniformity and ergodicity of Tent mapping,the MPSO avoids the extreme v^ue of position information,so as not to fall into the local optimal value.In brief the MPSOalgorithm is an effective a d useful method with a fast convergence rate and high accuracy.