Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to th...Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.展开更多
This paper proposes a novel LDPC based differential unitary space-frequency coding (DUSFC) scheme for MIMO-OFDM systems when neither the transmitter nor the receiver has access to the channel state information (CSI). ...This paper proposes a novel LDPC based differential unitary space-frequency coding (DUSFC) scheme for MIMO-OFDM systems when neither the transmitter nor the receiver has access to the channel state information (CSI). The new DUSFC strategy basically consists of coding across transmit antennas and OFDM tones simultaneously as well as differential modulation in the time-domain. It can fully exploit the inherent advantages provided by the multipath fading channels, resulting in a high degree of diversity. The state-of-the-art low-density parity-check (LDPC) codes are concatenated with our DUSFC as channel coding to improve the bit error rate (BER) performance considerably. Owing to the maximum multipath diversity and large coding advantages, LDPC-DUSFC strongly outperforms the differential unitary space-time coded OFDM techniques re- cently proposed in literature. The corresponding iterative decoding algorithm without channel estimation is finally provided to offer significant performance gain. Simulation results illustrate the merits of the proposed scheme.展开更多
When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportu...When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportunities.Because of the assumptive prior knowledge about the time-frequency locations of primary downlinks and uplinks,this procedure is usually not considered in the design of cognitive radios.In this paper,a cooperative method is proposed for the downlink/uplink identification of time-division duplex-based orthogonal frequency-division multiple access systems.In this method,the power level of the primary link is extracted as the key feature,which also contributes to the subsequent cognitive behaviours.The effects of the primary and secondary systems and the effects of the detection parameters on the identification accuracy are all analysed in detail.The simulation results show that the proposed method can identify the primary links precisely and quickly with low complexity.展开更多
基金Projects(51678071,51278071)supported by the National Natural Science Foundation of ChinaProjects(14KC06,CX2015BS02)supported by Changsha University of Science&Technology,China
文摘Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.
基金Project (No. 60272079) supported by the National Natural Sci-ence Foundation of China
文摘This paper proposes a novel LDPC based differential unitary space-frequency coding (DUSFC) scheme for MIMO-OFDM systems when neither the transmitter nor the receiver has access to the channel state information (CSI). The new DUSFC strategy basically consists of coding across transmit antennas and OFDM tones simultaneously as well as differential modulation in the time-domain. It can fully exploit the inherent advantages provided by the multipath fading channels, resulting in a high degree of diversity. The state-of-the-art low-density parity-check (LDPC) codes are concatenated with our DUSFC as channel coding to improve the bit error rate (BER) performance considerably. Owing to the maximum multipath diversity and large coding advantages, LDPC-DUSFC strongly outperforms the differential unitary space-time coded OFDM techniques re- cently proposed in literature. The corresponding iterative decoding algorithm without channel estimation is finally provided to offer significant performance gain. Simulation results illustrate the merits of the proposed scheme.
基金supported by the National Natural Science Foundation of China under Grants No. 60832008,No. 60902001
文摘When coexisting with dual-link primary systems,secondary systems in cognitive radios should first distinguish between the primary downlinks and uplinks in order to efficiently explore their respective spectrum opportunities.Because of the assumptive prior knowledge about the time-frequency locations of primary downlinks and uplinks,this procedure is usually not considered in the design of cognitive radios.In this paper,a cooperative method is proposed for the downlink/uplink identification of time-division duplex-based orthogonal frequency-division multiple access systems.In this method,the power level of the primary link is extracted as the key feature,which also contributes to the subsequent cognitive behaviours.The effects of the primary and secondary systems and the effects of the detection parameters on the identification accuracy are all analysed in detail.The simulation results show that the proposed method can identify the primary links precisely and quickly with low complexity.