期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
数据挖掘在学生成绩管理系统中的应用 被引量:2
1
作者 董彩云 刘培华 《现代计算机》 2009年第2期14-16,共3页
以基于园区网教学信息系统为基础,提出采用关联规则进行课程相关性多维分析方法。针对高校成绩管理系统的事务数据库表结构采用的纵向方式,对Apriori方法作了相应的改变。同时,提出采用分时挖掘的方法,即保留以前挖掘的数据,使得数据挖... 以基于园区网教学信息系统为基础,提出采用关联规则进行课程相关性多维分析方法。针对高校成绩管理系统的事务数据库表结构采用的纵向方式,对Apriori方法作了相应的改变。同时,提出采用分时挖掘的方法,即保留以前挖掘的数据,使得数据挖掘速度得以提升,以此提高系统的运行效率。 展开更多
关键词 课程相关 关联规则 分时挖掘 最小支持度
下载PDF
基于DM&AHP技术的大学生干部素质评定与决策
2
作者 李荣国 《中国科教创新导刊》 2010年第25期128-128,共1页
本文采用数据挖掘(DM)技术,提出分时挖掘的方法,即保留以前挖掘的数据,使得数据挖掘速度得以提升,以此提高系统的运行效率。进而通过对数据的统计分析,应用萨蒂层次分析法,建立模型,设计了学生干部综合素质评定决策系统,给出了一套科... 本文采用数据挖掘(DM)技术,提出分时挖掘的方法,即保留以前挖掘的数据,使得数据挖掘速度得以提升,以此提高系统的运行效率。进而通过对数据的统计分析,应用萨蒂层次分析法,建立模型,设计了学生干部综合素质评定决策系统,给出了一套科学合理的评价方案,对培养大学生干部综合素质具有积极的指导意义。 展开更多
关键词 数据挖掘(DM) 分时挖掘 数据库 层次分析法(AHP)
下载PDF
Light for Earthquake Prediction:Shocks before the L'Aquila Earthquake of April 6,2009 被引量:1
3
作者 Li Li Chen Yong 《Earthquake Research in China》 2010年第2期147-154,共8页
The temporal-spatial distribution of mid-small earthquakes in Italy and its surroundings from January 1 to April 5,2009 shows that there were significant foreshocks before the moderate L'Aquila earthquake of April... The temporal-spatial distribution of mid-small earthquakes in Italy and its surroundings from January 1 to April 5,2009 shows that there were significant foreshocks before the moderate L'Aquila earthquake of April 6,2009.The enhancement of frequency and intensity of small earthquakes and their concentrating tendency to the future main shock have provided a comprehensive case for digging methods of earthquake forecasting with foreshocks. 展开更多
关键词 FORESHOCK Earthquake forecasting Mid-term earthquake prediction Italian Earthquake
下载PDF
Modeling and Mining the Temporal Patterns of Service in Cellular Network
4
作者 Sun Weijian Qin Xiaowei Wei Guo 《China Communications》 SCIE CSCD 2015年第9期11-21,共11页
Recent emergence of diverse services have led to explosive traffic growth in cellular data networks. Understanding the service dynamics in large cellular networks is important for network design, trouble shooting, qua... Recent emergence of diverse services have led to explosive traffic growth in cellular data networks. Understanding the service dynamics in large cellular networks is important for network design, trouble shooting, quality of service(Qo E) support, and resource allocation. In this paper, we present our study to reveal the distributions and temporal patterns of different services in cellular data network from two different perspectives, namely service request times and service duration. Our study is based on big traffic data, which is parsed to readable records by our Hadoop-based packet parsing platform, captured over a week-long period from a tier-1 mobile operator's network in China. We propose a Zipf's ranked model to characterize the distributions of traffic volume, packet, request times and duration of cellular services. Two-stage method(Self-Organizing Map combined with kmeans) is first used to cluster time series of service into four request patterns and three duration patterns. These seven patterns are combined together to better understand the fine-grained temporal patterns of service in cellular network. Results of our distribution models and temporal patterns present cellular network operators with a better understanding of the request and duration characteristics of service, which of great importance in network design, service generation and resource allocation. 展开更多
关键词 big data cellular network data mining hadoop SOM cluster service
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部