The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in ...The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective vis-cosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of therate-of-strain tensor and the fiber orientation state ; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local stream-lines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of ef-fective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds numberbut on the converging channel angle.展开更多
Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bu...Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established characteristics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil(IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index(CEI) entropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and understand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed.展开更多
We derive exact near-wall and centerline constraints and apply them to improve a recently proposed LPR model for finite Reynolds number(Re) turbulent channel flows.The analysis defines two constants which are invarian...We derive exact near-wall and centerline constraints and apply them to improve a recently proposed LPR model for finite Reynolds number(Re) turbulent channel flows.The analysis defines two constants which are invariant with Re and suggests two more layers for incorporating boundary effects in the prediction of the mean velocity profile in the turbulent channel.These results provide corrections for the LPR mixing length model and incorrect predictions near the wall and the centerline.Moreover,we show that the analysis,together with a set of well-defined sensitive indicators,is useful for assessment of numerical simulation data.展开更多
文摘The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective vis-cosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of therate-of-strain tensor and the fiber orientation state ; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local stream-lines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of ef-fective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds numberbut on the converging channel angle.
基金Supported by the National Natural Science Foundation of China(51406031)Jilin City Science and Technology Plan Project(201464055)Jilin Province Education Department Science Research Project(2015-243)
文摘Gas–liquid two-phase flow is complex and has uncertainty in phase interfaces, which make the two-phase flow look very complicated. Even though the flow behavior(e.g. coalescence, crushing and separation) of single bubble or bubble groups in the liquid phase looks random, combining some established characteristics and methodologies can find regularities among the randomness. In order to excavate the nonlinear dynamic characteristics of gas–liquid two-phase flow, the authors developed an improved matrix pencil(IMP) method to analyze the pressure difference signals of the two-phase flow. This paper elucidates the influence of signal length on MP calculation results and the anti-noise-interference ability of the MP method. An IMP algorithm was applied to the fluctuation signals of gas–liquid two-phase flow to extract the mode frequency and damping ratio, which were combined with the component energy index(CEI) entropy to identify the different flow patterns. It is also found that frequency, damping ratio, CEI entropy and stability diagram together not only identify flow patterns, but also provide a new way to examine and understand the evolution mechanism of physical dynamics embedded in flow patterns. Combining these characteristics and methods, the evolution of the nonlinear dynamic physical behavior of gas bubbles is revealed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90716008 and 10921202)the National Basic Research Program of China (Grant No. 2009CB724100)
文摘We derive exact near-wall and centerline constraints and apply them to improve a recently proposed LPR model for finite Reynolds number(Re) turbulent channel flows.The analysis defines two constants which are invariant with Re and suggests two more layers for incorporating boundary effects in the prediction of the mean velocity profile in the turbulent channel.These results provide corrections for the LPR mixing length model and incorrect predictions near the wall and the centerline.Moreover,we show that the analysis,together with a set of well-defined sensitive indicators,is useful for assessment of numerical simulation data.