期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
浅谈文化环境对我国企业国际市场营销的影响 被引量:6
1
作者 陈梅 《商场现代化》 北大核心 2007年第01S期32-33,共2页
随着经济全球化进程的加快,尤其是中国加入世贸组织后越来越多的中国企业由“内向型”转向“外向型”,积极开拓国际市场,全方位地参与国际商务活动,而活动的核心则是国际市场营销。这种跨国界的商务活动与国内营销的最大区别就是:要与... 随着经济全球化进程的加快,尤其是中国加入世贸组织后越来越多的中国企业由“内向型”转向“外向型”,积极开拓国际市场,全方位地参与国际商务活动,而活动的核心则是国际市场营销。这种跨国界的商务活动与国内营销的最大区别就是:要与不同文化环境的人打交道。处于不同文化环境的人,在语言、宗教信仰、价值观念、思维方式、风俗习惯等方面都存在着差异,因此不仅对商品和服务的需求不同,而且对同一句话、同一个动作、同一件事往往有着不同、甚至相反的理解。也就是说,在某个特定的文化环境中有效的营销方法在另一个文化里可能就没有效果,甚至产生误解、摩擦和冲突。在进行国际市场营销活动中,我国企业必须重视各种文化环境因素的影响,分析并适应这些不同的文化环境。 展开更多
关键词 文化环境 国际市场营销 分析和适应
下载PDF
Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface 被引量:1
2
作者 Bang-hua YANG Liang-fei HE Lin LIN Qian WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第6期486-496,共11页
Ocular artifacts cause the main interfering signals within electroencephalogram (EEG) signal measurements. An adaptive filter based on reference signals from an electrooculogram (EOG) can reduce ocular interferenc... Ocular artifacts cause the main interfering signals within electroencephalogram (EEG) signal measurements. An adaptive filter based on reference signals from an electrooculogram (EOG) can reduce ocular interference, but collecting EOG signals during a long-term EEG recording is inconvenient and uncomfortable for the subject. To remove ocular artifacts from EEG in brain-computer interfaces (BCIs), a method named spatial constraint independent component analysis based recursive least squares (SCICA-RLS) is proposed. The method consists of two stages. In the first stage, independent component analysis (ICA) is used to decompose multiple EEG channels into an equal number of independent components (ICs). Ocular ICs are identified by an automatic artifact detection method based on kurtosis. Then empirical mode decomposition (EMD) is employed to remove any cerebral activity from the identified ocular ICs to obtain exact altifact ICs. In the second stage, first, SCICA applies exact artifact ICs obtained in the first stage as a constraint to extract artifact ICs from the given EEG signal. These extracted ICs are called spatial constraint ICs (SC-ICs). Then the RLS based adaptive filter uses SC-ICs as reference signals to reduce interference, which avoids the need for parallel EOG recordings. In addition, the proposed method has the ability of fast computation as it is not necessary for SCICA to identify all ICs like ICA. Based on the EEG data recorded from seven subjects, the new approach can lead to average classification accuracies of 3.3% and 12.6% higher than those of the standard ICA and raw EEG, respectively. In addition, the proposed method has 83.5% and 83.8% reduction in time-consumption compared with the standard ICA and ICA-RLS, respectively, which demonstrates a better and faster OA reduction. 展开更多
关键词 Ocular artifacts Electroencephalogram (EEG) Electrooculogram (EOG) Brain-computer interface (BCI) Spatialconstraint independent component analysis based recursive least squares (SCICA-RLS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部