When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positi...When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates(Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.展开更多
Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is p...Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is proposed in this paper, which can attain sub-micron-seale precision over the cubic centimeter motion range. This paper introduces the mechanical system architecture based on the wide-range flexure hinges, analyzes the kinematics via stiffness matrices, presents the control system configuration and control strategy, and finally gives the system performance test results.展开更多
Conventional analysis methods of cable structures do not consider sliding of cables inside the joint,which may lead to inaccuracy of the theoretical behavior of the structure.In order to develop an effective method fo...Conventional analysis methods of cable structures do not consider sliding of cables inside the joint,which may lead to inaccuracy of the theoretical behavior of the structure.In order to develop an effective method for cable sliding,a two-node cable element based on the analytical solution for an elastic catenary was studied.The cable sliding stiffness and the effect of friction were investigated.To validate the proposed numerical method,analyses of two examples given in the literature were conducted.The results demonstrated that the method given in this paper is accurate and effective,and can take into account cable sliding in cable structures.In addition,it was shown that the effect of cable sliding on the behavior of cable structures is significant.It was also shown that the friction at the support hampers the flow of the cable force,leading to unequal cable tensions on both sides of the support.展开更多
Hydrological risk is highly dependent on the occurrence of extreme rainfalls.This fact has led to a wide range of studies on the estimation and uncertainty analysis of the extremes.In most cases,confidence intervals(C...Hydrological risk is highly dependent on the occurrence of extreme rainfalls.This fact has led to a wide range of studies on the estimation and uncertainty analysis of the extremes.In most cases,confidence intervals(CIs)are constructed to represent the uncertainty of the estimates.Since the accuracy of CIs depends on the asymptotic normality of the data and is questionable with limited observations in practice,a Bayesian highest posterior density(HPD)interval,bootstrap percentile interval,and profile likelihood(PL)interval have been introduced to analyze the uncertainty that does not depend on the normality assumption.However,comparison studies to investigate their performances in terms of the accuracy and uncertainty of the estimates are scarce.In addition,the strengths,weakness,and conditions necessary for performing each method also must be investigated.Accordingly,in this study,test experiments with simulations from varying parent distributions and different sample sizes were conducted.Then,applications to the annual maximum rainfall(AMR)time series data in South Korea were performed.Five districts with 38-year(1973–2010)AMR observations were fitted by the three aforementioned methods in the application.From both the experimental and application results,the Bayesian method is found to provide the lowest uncertainty of the design level while the PL estimates generally have the highest accuracy but also the largest uncertainty.The bootstrap estimates are usually inferior to the other two methods,but can perform adequately when the distribution model is not heavy-tailed and the sample size is large.The distribution tail behavior and the sample size are clearly found to affect the estimation accuracy and uncertainty.This study presents a comparative result,which can help researchers make decisions in the context of assessing extreme rainfall uncertainties.展开更多
基金supported by the National Scientific Foundation of China (Grant no. 41506085)the Open Foundation of the Key Laboratory of Gas Hydrate, Ministry of Land and Resources, China (Grant no. SHW [2014]-DX-12)the China Geological Survey Project (Grant no. DD20160213)
文摘When used with large energy sparkers, marine multichannel small-scale high-resolution seismic detection technology has a high resolution, high-detection precision, a wide applicable range, and is very flexible. Positive results have been achieved in submarine geological research, particularly in the investigation of marine gas hydrates. However, the amount of traveltime difference information is reduced for the velocity analysis under conditions of a shorter spread length, thus leading to poorer focusing of the velocity spectrum energy group and a lower accuracy of the velocity analysis. It is thus currently debatable whether the velocity analysis accuracy of short-arrangement multichannel seismic detection technology is able to meet the requirements of practical application in natural gas hydrate exploration. Therefore, in this study the bottom boundary of gas hydrates(Bottom Simulating Reflector, BSR) is used to conduct numerical simulation to discuss the accuracy of the velocity analysis related to such technology. Results show that a higher dominant frequency and smaller sampling interval are not only able to improve the seismic resolution, but they also compensate for the defects of the short-arrangement, thereby improving the accuracy of the velocity analysis. In conclusion, the accuracy of the velocity analysis in this small-scale, high-resolution, multi-channel seismic detection technology meets the requirements of natural gas hydrate exploration.
文摘Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is proposed in this paper, which can attain sub-micron-seale precision over the cubic centimeter motion range. This paper introduces the mechanical system architecture based on the wide-range flexure hinges, analyzes the kinematics via stiffness matrices, presents the control system configuration and control strategy, and finally gives the system performance test results.
基金supported by the National Natural Science Foundation of China (Grant No. 50478075)Jiangsu "Six Top Talents" Program (Grant No. 07-F-008)+1 种基金Scientific Research Foundation of Graduate School of Southeast University (Grant No. YBJJ0817)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Conventional analysis methods of cable structures do not consider sliding of cables inside the joint,which may lead to inaccuracy of the theoretical behavior of the structure.In order to develop an effective method for cable sliding,a two-node cable element based on the analytical solution for an elastic catenary was studied.The cable sliding stiffness and the effect of friction were investigated.To validate the proposed numerical method,analyses of two examples given in the literature were conducted.The results demonstrated that the method given in this paper is accurate and effective,and can take into account cable sliding in cable structures.In addition,it was shown that the effect of cable sliding on the behavior of cable structures is significant.It was also shown that the friction at the support hampers the flow of the cable force,leading to unequal cable tensions on both sides of the support.
基金supported by Hanyang University(Grant No.HY-2014)
文摘Hydrological risk is highly dependent on the occurrence of extreme rainfalls.This fact has led to a wide range of studies on the estimation and uncertainty analysis of the extremes.In most cases,confidence intervals(CIs)are constructed to represent the uncertainty of the estimates.Since the accuracy of CIs depends on the asymptotic normality of the data and is questionable with limited observations in practice,a Bayesian highest posterior density(HPD)interval,bootstrap percentile interval,and profile likelihood(PL)interval have been introduced to analyze the uncertainty that does not depend on the normality assumption.However,comparison studies to investigate their performances in terms of the accuracy and uncertainty of the estimates are scarce.In addition,the strengths,weakness,and conditions necessary for performing each method also must be investigated.Accordingly,in this study,test experiments with simulations from varying parent distributions and different sample sizes were conducted.Then,applications to the annual maximum rainfall(AMR)time series data in South Korea were performed.Five districts with 38-year(1973–2010)AMR observations were fitted by the three aforementioned methods in the application.From both the experimental and application results,the Bayesian method is found to provide the lowest uncertainty of the design level while the PL estimates generally have the highest accuracy but also the largest uncertainty.The bootstrap estimates are usually inferior to the other two methods,but can perform adequately when the distribution model is not heavy-tailed and the sample size is large.The distribution tail behavior and the sample size are clearly found to affect the estimation accuracy and uncertainty.This study presents a comparative result,which can help researchers make decisions in the context of assessing extreme rainfall uncertainties.