To gain insight into the attachment of =Si^+ (SC) ion (regarded as guest) to the lowest generation, NH2-terminated poly(amidoamine) (PAMAM) dendrimers (regarded as host) in the liquid phase, density functio...To gain insight into the attachment of =Si^+ (SC) ion (regarded as guest) to the lowest generation, NH2-terminated poly(amidoamine) (PAMAM) dendrimers (regarded as host) in the liquid phase, density functional theory is used to investigate the structures and energetics of the host-guest complex. The effect of solvent on the structures and energetics is also investigated. Various initial configurations of the ion bound to PAMAM are tested, and two stable conformers are found, i.e, types A (=Si^+ is bound to the amine site) and C (=Si^+ is bound to the amide site). Types A and C are the most stable due to the chemical bond formations of Si-N° (amine nitrogen atoms) and Si-O, respectively. The IR spectra for the lowest energy conformers are thoroughly analyzed and compared with the available experimental data.展开更多
In this work, the optical properties of fluorescent probes used for detection of biothiol were studied by employing time-dependent density functional theory. By calculating the single photon absorption and emission pr...In this work, the optical properties of fluorescent probes used for detection of biothiol were studied by employing time-dependent density functional theory. By calculating the single photon absorption and emission properties of probe Mol.1, Mol.2 and Mol.3 before and after reaction with cysteine and homocysteine, we have investigated the effect of carboncarbon triple bond and benzene ring on the properties of fluorescent probes. It is found that the oscillator strength of probe molecules increases gradually with the improvement of the structure of the electron donor triphenylamine and the addition of carbon-carbon triple bonds, and better properties of fluorescence probes have also been demonstrated. At the same time, the effect of different number of side branches on the molecular properties of the probe was also studied. The results showed that compared with single-branched molecule Z1 and tribranched probe Mol.3, two side probe molecules Z2 had higher oscillator strength and better detection effect. In addition, the new single-branched probe Mol.4 with the addition of carbon-carbon triple bonds and benzene rings has better probe properties and simpler structure than the tribranched probe Mol.3.展开更多
文摘To gain insight into the attachment of =Si^+ (SC) ion (regarded as guest) to the lowest generation, NH2-terminated poly(amidoamine) (PAMAM) dendrimers (regarded as host) in the liquid phase, density functional theory is used to investigate the structures and energetics of the host-guest complex. The effect of solvent on the structures and energetics is also investigated. Various initial configurations of the ion bound to PAMAM are tested, and two stable conformers are found, i.e, types A (=Si^+ is bound to the amine site) and C (=Si^+ is bound to the amide site). Types A and C are the most stable due to the chemical bond formations of Si-N° (amine nitrogen atoms) and Si-O, respectively. The IR spectra for the lowest energy conformers are thoroughly analyzed and compared with the available experimental data.
基金supported by the National Natural Science Foundation of China (No.11604185 and No.11804196)the Taishan Scholar Program of Shandong Province of China
文摘In this work, the optical properties of fluorescent probes used for detection of biothiol were studied by employing time-dependent density functional theory. By calculating the single photon absorption and emission properties of probe Mol.1, Mol.2 and Mol.3 before and after reaction with cysteine and homocysteine, we have investigated the effect of carboncarbon triple bond and benzene ring on the properties of fluorescent probes. It is found that the oscillator strength of probe molecules increases gradually with the improvement of the structure of the electron donor triphenylamine and the addition of carbon-carbon triple bonds, and better properties of fluorescence probes have also been demonstrated. At the same time, the effect of different number of side branches on the molecular properties of the probe was also studied. The results showed that compared with single-branched molecule Z1 and tribranched probe Mol.3, two side probe molecules Z2 had higher oscillator strength and better detection effect. In addition, the new single-branched probe Mol.4 with the addition of carbon-carbon triple bonds and benzene rings has better probe properties and simpler structure than the tribranched probe Mol.3.