A process parameter optimization method for mold wear during die forging process is proposed and a mold life prediction method based on polynomial fitting is presented,by combining the variance analysis method in the ...A process parameter optimization method for mold wear during die forging process is proposed and a mold life prediction method based on polynomial fitting is presented,by combining the variance analysis method in the orthogonal test with the finite element simulation test in the forging process.The process parameters with the greatest influence on the mold wear during the die forging process and the optimal solution of the process parameters to minimize the wear depth of the mold are derived.The hot die forging process is taken as an example,and a mold wear correction model for hot forging processes is derived based on the Archard wear model.Finite element simulation analysis of die wear process in hot die forging based on deform software is performed to study the relationship between the wear depth of the mold working surface and the die forging process parameters during hot forging process.The optimized process parameters suitable for hot forging are derived by orthogonal experimental design and analysis of variance.The average wear amount of the mold during the die forging process is derived by calculating the wear depth of a plurality of key nodes on the mold surface.Mold life for the entire production process is predicted based on average mold wear depth and polynomial fitting.展开更多
To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for desig...To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for designing a new robotic helical milling hole system, which could further improve robotic hole-making ability in airplane digital assembly. After analysis on the characteristics of helical milling hole, advantages and limitations of two typical robotic helical milling hole systems were summarized. Then, vector model of helical milling hole movement was built on vector analysis method. Finally, surface roughness calculation formula was deduced according to the movement principle of helical milling hole, then the influence of main technological parameters on surface roughness was analyzed. Analysis shows that theoretical surface roughness of hole becomes poor with the increase of tool speed ratio and revolution radius. Meanwhile, the roughness decreases according to the increase of tool teeth number. The research contributes greatly to the construction of roughness prediction model in helical milling hole.展开更多
The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics fractionation unit and the heat integrated rectification process was proposed for the aromatics fractionation sect...The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics fractionation unit and the heat integrated rectification process was proposed for the aromatics fractionation section of the 1.0 Mt/a toluene disproportionation unit at the Zhenhai Refining and Chemical Company. The optimized operating parameters were obtained through the energy utilization analysis,process simulation,heat exchanger calculations and comparisons of utility consumption. The operation of commercialized unit has revealed that the design parameters of each rectification column were consistent with the operation results,and the utility consumption was about 47% lower than the traditional heat integrated process.展开更多
The grand canonical Monte Carlo (GCMC), the canonical Monte Carlo by using equal probability perturbation, and the molecular dynamics (MD) methods were used to study the capillary phase-transition (capillary condensat...The grand canonical Monte Carlo (GCMC), the canonical Monte Carlo by using equal probability perturbation, and the molecular dynamics (MD) methods were used to study the capillary phase-transition (capillary condensation and evaporation) and self-diffusion for a simple Lennard-Jones model of ethylene confined in slit carbon pores of 2.109 nm at temperatures between 141.26 K and 201.80 K. The critical point of capillary phase-transition was extrapolated by the critical power law and the law of rectilinear diameter from the capillary phase-transition data in the near critical region. The effects of temperature and fluid density on the parallel self-diffusion coefficients of ethylene molecules confined in the slit carbon pores were examined. The results showed that the parallel selfdiffusion coefficients in the capillary phase transition area strongly depended on the fluids local densities in the slit carbon pores.展开更多
Hydriding-dehydriding process has been widely employed to comminute uranium alloys. Developments have been made to improve this process because it is a cheaper way to obtain powder of uranium alloys compared to the ot...Hydriding-dehydriding process has been widely employed to comminute uranium alloys. Developments have been made to improve this process because it is a cheaper way to obtain powder of uranium alloys compared to the other methods, such as atomization. This work presented an innovative comminution process of U-10Mo alloy in laboratory scale where a Sievert type equipment was utilized and only hydriding cycles were employed without repetition of the dehydriding procedure. Experiments of comminution of the U-10Mo alloy were carried out by employing alloy samples which were submitted to different heat treatment conditions and, subsequently, to different hydriding cycles. The heat treatments considered were hot rolled at 800 ℃, homogenization at 900 ℃ or 1,000 ℃ and aging at 520℃. It was observed that the number of hydriding cycles and heat treatment conditions have influenced the particle size distributions. Samples that were hot-rolled, homogenized at 1,000 ℃ and aged, and comminuted with five cycles of hydriding have produced powders with particle size distribution more uniform with the major quantity of particles in the range from 50μm to 200 μm while the other conditions have obtained a great quantity above 200 μm.展开更多
In recent years, high precision geometric shape, surface roughness, and cost reduction are required for large glass component molding processes. In this research, the polishing process of stainless steel molding dies ...In recent years, high precision geometric shape, surface roughness, and cost reduction are required for large glass component molding processes. In this research, the polishing process of stainless steel molding dies used to form thin glass components is investigated. The surface roughness of the polished stainless steel molding die surface is below Rz = 200 nm (P-V) at 15 h polishing with 0.5 % alumina polishing liquid. In the case of polishing process with only the weight of molding die and a polishing pressure of 0.5 kPa, polishing times are approximately 60 h and 20 h, respectively. Final surface roughness polished stainless steel molding die surface with pressure of 0.5 kPa is Rz = 7 nm (P-V), rms -- 1.6 nm and Ra = 1.4 nm. In a thin glass component manufacturing method, "slumping method", surface roughness before glass forming is rms = 0.7 nm and Ra = 0.6 nm, and after is rms = 0.7 nm and Ra = 0.6 nm. Therefore, there were no observable changes their surface roughness.展开更多
During stamping process, the material properties, process design parameters and production environments inevitably have variation and noisy factors, which possibly affect the sheet metal formability and the deformatio...During stamping process, the material properties, process design parameters and production environments inevitably have variation and noisy factors, which possibly affect the sheet metal formability and the deformation of the die structure.After gaining a success in applying sheet metal forming numerical simulation analysis to get the forming loads during stamping process, a methodology of die structure analysis based on sheet metal forming simulation was proposed and validated by experiments.Based on these results, the effect related with initial blank thickness, blank holder force, blank positioning error and die alignment error variations to a DP600 hyperbolic bottomed cup drawing die's forming loads(especially unbalanced loads), and deformation and stress was studied numerically.The influence level of these variations to the die's forming loads, deformation and stress was disclosed.The findings can guide die design, die tryout and process control for high-strength steel(HSS) stamping with increased forming load and decreased sheet metal formability.展开更多
An optical transceiver with a novel optical subassembly structure is proposed in this paper, which achieves high coupling efficiency and low assembly difficulty. The proposed optical transceiver consumes 0.9 W power a...An optical transceiver with a novel optical subassembly structure is proposed in this paper, which achieves high coupling efficiency and low assembly difficulty. The proposed optical transceiver consumes 0.9 W power and retains a small size of 28 mmx16 mmx3 mm. The fabrication process of the silicon substrate and the assembly process of the optical transceiver are demonstrated in details. Moreover, the optical transceiver is measured in order to verify its transmission performance. The clear eye diagrams and the low bit error rate (BER) less than 1013 at 10 Gbit/s per channel show good transmission characteristics of the designed optical transceiver.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(No.51575008).
文摘A process parameter optimization method for mold wear during die forging process is proposed and a mold life prediction method based on polynomial fitting is presented,by combining the variance analysis method in the orthogonal test with the finite element simulation test in the forging process.The process parameters with the greatest influence on the mold wear during the die forging process and the optimal solution of the process parameters to minimize the wear depth of the mold are derived.The hot die forging process is taken as an example,and a mold wear correction model for hot forging processes is derived based on the Archard wear model.Finite element simulation analysis of die wear process in hot die forging based on deform software is performed to study the relationship between the wear depth of the mold working surface and the die forging process parameters during hot forging process.The optimized process parameters suitable for hot forging are derived by orthogonal experimental design and analysis of variance.The average wear amount of the mold during the die forging process is derived by calculating the wear depth of a plurality of key nodes on the mold surface.Mold life for the entire production process is predicted based on average mold wear depth and polynomial fitting.
基金Foundation item: Projects(50975141, 51005118) supported by the National Natural Science Foundation of China Projects(20091652018, 2010352005) supported by Aviation Science Fund of China Project(YKJ11-001) supported by Key Program of Nanjing College of Information Technology Institute, China
文摘To avoid the machine problems of excessive axial force, complex process flow and frequent tool changing during robotic drilling holes, a new hole-making technology (i.e., helical milling hole) was introduced for designing a new robotic helical milling hole system, which could further improve robotic hole-making ability in airplane digital assembly. After analysis on the characteristics of helical milling hole, advantages and limitations of two typical robotic helical milling hole systems were summarized. Then, vector model of helical milling hole movement was built on vector analysis method. Finally, surface roughness calculation formula was deduced according to the movement principle of helical milling hole, then the influence of main technological parameters on surface roughness was analyzed. Analysis shows that theoretical surface roughness of hole becomes poor with the increase of tool speed ratio and revolution radius. Meanwhile, the roughness decreases according to the increase of tool teeth number. The research contributes greatly to the construction of roughness prediction model in helical milling hole.
文摘The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics fractionation unit and the heat integrated rectification process was proposed for the aromatics fractionation section of the 1.0 Mt/a toluene disproportionation unit at the Zhenhai Refining and Chemical Company. The optimized operating parameters were obtained through the energy utilization analysis,process simulation,heat exchanger calculations and comparisons of utility consumption. The operation of commercialized unit has revealed that the design parameters of each rectification column were consistent with the operation results,and the utility consumption was about 47% lower than the traditional heat integrated process.
基金the National Science Foundation of China (NSFC) the China Petrochemical Corporation (SINOPEC) (No. 29792077).
文摘The grand canonical Monte Carlo (GCMC), the canonical Monte Carlo by using equal probability perturbation, and the molecular dynamics (MD) methods were used to study the capillary phase-transition (capillary condensation and evaporation) and self-diffusion for a simple Lennard-Jones model of ethylene confined in slit carbon pores of 2.109 nm at temperatures between 141.26 K and 201.80 K. The critical point of capillary phase-transition was extrapolated by the critical power law and the law of rectilinear diameter from the capillary phase-transition data in the near critical region. The effects of temperature and fluid density on the parallel self-diffusion coefficients of ethylene molecules confined in the slit carbon pores were examined. The results showed that the parallel selfdiffusion coefficients in the capillary phase transition area strongly depended on the fluids local densities in the slit carbon pores.
文摘Hydriding-dehydriding process has been widely employed to comminute uranium alloys. Developments have been made to improve this process because it is a cheaper way to obtain powder of uranium alloys compared to the other methods, such as atomization. This work presented an innovative comminution process of U-10Mo alloy in laboratory scale where a Sievert type equipment was utilized and only hydriding cycles were employed without repetition of the dehydriding procedure. Experiments of comminution of the U-10Mo alloy were carried out by employing alloy samples which were submitted to different heat treatment conditions and, subsequently, to different hydriding cycles. The heat treatments considered were hot rolled at 800 ℃, homogenization at 900 ℃ or 1,000 ℃ and aging at 520℃. It was observed that the number of hydriding cycles and heat treatment conditions have influenced the particle size distributions. Samples that were hot-rolled, homogenized at 1,000 ℃ and aged, and comminuted with five cycles of hydriding have produced powders with particle size distribution more uniform with the major quantity of particles in the range from 50μm to 200 μm while the other conditions have obtained a great quantity above 200 μm.
文摘In recent years, high precision geometric shape, surface roughness, and cost reduction are required for large glass component molding processes. In this research, the polishing process of stainless steel molding dies used to form thin glass components is investigated. The surface roughness of the polished stainless steel molding die surface is below Rz = 200 nm (P-V) at 15 h polishing with 0.5 % alumina polishing liquid. In the case of polishing process with only the weight of molding die and a polishing pressure of 0.5 kPa, polishing times are approximately 60 h and 20 h, respectively. Final surface roughness polished stainless steel molding die surface with pressure of 0.5 kPa is Rz = 7 nm (P-V), rms -- 1.6 nm and Ra = 1.4 nm. In a thin glass component manufacturing method, "slumping method", surface roughness before glass forming is rms = 0.7 nm and Ra = 0.6 nm, and after is rms = 0.7 nm and Ra = 0.6 nm. Therefore, there were no observable changes their surface roughness.
基金the National Natural Science Founda-tion of China (No. 50475020)the Ford Motor Company University Research Program (No. 20054004R)
文摘During stamping process, the material properties, process design parameters and production environments inevitably have variation and noisy factors, which possibly affect the sheet metal formability and the deformation of the die structure.After gaining a success in applying sheet metal forming numerical simulation analysis to get the forming loads during stamping process, a methodology of die structure analysis based on sheet metal forming simulation was proposed and validated by experiments.Based on these results, the effect related with initial blank thickness, blank holder force, blank positioning error and die alignment error variations to a DP600 hyperbolic bottomed cup drawing die's forming loads(especially unbalanced loads), and deformation and stress was studied numerically.The influence level of these variations to the die's forming loads, deformation and stress was disclosed.The findings can guide die design, die tryout and process control for high-strength steel(HSS) stamping with increased forming load and decreased sheet metal formability.
基金supported by the National High Technology Research and Development Program of China(No.2015AA016904)
文摘An optical transceiver with a novel optical subassembly structure is proposed in this paper, which achieves high coupling efficiency and low assembly difficulty. The proposed optical transceiver consumes 0.9 W power and retains a small size of 28 mmx16 mmx3 mm. The fabrication process of the silicon substrate and the assembly process of the optical transceiver are demonstrated in details. Moreover, the optical transceiver is measured in order to verify its transmission performance. The clear eye diagrams and the low bit error rate (BER) less than 1013 at 10 Gbit/s per channel show good transmission characteristics of the designed optical transceiver.