Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the ...Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the pair (A, B), and then the deformation D^π becomes a multiplier Hopf algebra. B×A can be considered as a subalgebra of M(D^π×D^π), the image of element b×a in B×A is (1∝b)×(a∝1) in M(D^π×D^π). Let W =∑αWα∈ M(B×A) be a π-canonical multiplier for the pair (A, B) with Wα∈M(Bα×A) for all α∈G. The image of W in M(D^π×D^π)is a π-quasitriangular structure over D^π.展开更多
基金Specialized Research Fund for the Doctoral Program of Higher Education(No20060286006)the National Natural Science Foundation of China(No10871042)
文摘Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the pair (A, B), and then the deformation D^π becomes a multiplier Hopf algebra. B×A can be considered as a subalgebra of M(D^π×D^π), the image of element b×a in B×A is (1∝b)×(a∝1) in M(D^π×D^π). Let W =∑αWα∈ M(B×A) be a π-canonical multiplier for the pair (A, B) with Wα∈M(Bα×A) for all α∈G. The image of W in M(D^π×D^π)is a π-quasitriangular structure over D^π.