可变磁阻旋转变压器由于其耐高温、受机械振动影响小、结构简单等优点广泛应用于恶劣工作环境的转子位置检测。此前工作提出了一种内定子变磁阻旋转变压器径向集成在永磁同步电机中的混合双定子电机结构,并采用改进绕组函数法(Modified ...可变磁阻旋转变压器由于其耐高温、受机械振动影响小、结构简单等优点广泛应用于恶劣工作环境的转子位置检测。此前工作提出了一种内定子变磁阻旋转变压器径向集成在永磁同步电机中的混合双定子电机结构,并采用改进绕组函数法(Modified winding function approach,MWFA)对其磁场分布和电磁参数进行解析分析。然而,解析计算得到的气隙磁通密度在槽开口处与有限元分析结果相比仍存在偏差。为此,提出分段绕组函数法(Segmented winding function method,SWFM),通过考虑磁场和绕组的实际分布,对气隙和线圈匝数函数进行分段处理,进一步提高解析计算结果的精确性。利用该方法计算气隙磁通密度和励磁绕组自感,并将SWFM和MWFA结果与有限元分析进行对比,验证所提方法的有效性。展开更多
In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scena...In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scenario,on the basis of geometric relationship of each phase trajectory,the problem of trajectory planning is transformed to parameter optimizing,and then auxiliary population-based quantum differential evolution algorithm(AP-QDEA)is applied as a tool to optimize the objective function,and the design parameters of the whole homing trajectory are obtained.The proposed AP-QDEA combines the strengths of differential evolution algorithm(DEA)and quantum evolution algorithm(QEA),and the notion of auxiliary population is introduced into the proposed algorithm to improve the searching precision and speed.The simulation results show that the proposed AP-QDEA is proven its superior in both effectiveness and efficiency by solving a set of benchmark problems,and the multiphase homing scheme can fulfill the requirement of fixed-points and upwind landing in the process of homing which is simple in control and facile in practice as well.展开更多
文摘可变磁阻旋转变压器由于其耐高温、受机械振动影响小、结构简单等优点广泛应用于恶劣工作环境的转子位置检测。此前工作提出了一种内定子变磁阻旋转变压器径向集成在永磁同步电机中的混合双定子电机结构,并采用改进绕组函数法(Modified winding function approach,MWFA)对其磁场分布和电磁参数进行解析分析。然而,解析计算得到的气隙磁通密度在槽开口处与有限元分析结果相比仍存在偏差。为此,提出分段绕组函数法(Segmented winding function method,SWFM),通过考虑磁场和绕组的实际分布,对气隙和线圈匝数函数进行分段处理,进一步提高解析计算结果的精确性。利用该方法计算气隙磁通密度和励磁绕组自感,并将SWFM和MWFA结果与有限元分析进行对比,验证所提方法的有效性。
基金Project(61273138) supported by the National Natural Science Foundation of ChinaProjects(KJ2016A169,KJ2015A242) supported by the University Natural Science Research Key Project of Anhui Province,ChinaProject(ZRC2014444) supported by the Talents Program of Anhui Science and Technology University,China
文摘In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scenario,on the basis of geometric relationship of each phase trajectory,the problem of trajectory planning is transformed to parameter optimizing,and then auxiliary population-based quantum differential evolution algorithm(AP-QDEA)is applied as a tool to optimize the objective function,and the design parameters of the whole homing trajectory are obtained.The proposed AP-QDEA combines the strengths of differential evolution algorithm(DEA)and quantum evolution algorithm(QEA),and the notion of auxiliary population is introduced into the proposed algorithm to improve the searching precision and speed.The simulation results show that the proposed AP-QDEA is proven its superior in both effectiveness and efficiency by solving a set of benchmark problems,and the multiphase homing scheme can fulfill the requirement of fixed-points and upwind landing in the process of homing which is simple in control and facile in practice as well.