A new explicit quadratic radical function is found by numerical experiments,which is simpler and has only 70.778%of the maximal distance error compared with the Fisher z transformation.Furthermore,a piecewise function...A new explicit quadratic radical function is found by numerical experiments,which is simpler and has only 70.778%of the maximal distance error compared with the Fisher z transformation.Furthermore,a piecewise function is constructed for the standard normal distribution:if the independent variable falls in the interval(-1.519,1.519),the proposed function is employed;otherwise,the Fisher z transformation is used.Compared with the Fisher z transformation,this piecewise function has only 38.206%of the total error.The new function is more exact to estimate the confidence intervals of Pearson product moment correlation coefficient and Dickinson best weights for the linear combination of forecasts.展开更多
Laboratory tests were carried out to study the breakage kinetics of diasporic bauxite and determine its breakage distribution function. Non-first order breakage with different deceleration rates for different size int...Laboratory tests were carried out to study the breakage kinetics of diasporic bauxite and determine its breakage distribution function. Non-first order breakage with different deceleration rates for different size intervals is found, which is most probably caused by the heterogeneity of the ore. Piecewise linearization method is proposed to describe the non-first order breakage according to its characteristics. In the method, grinding time is divided into several intervals and breakage is assumed to be first order in each interval. So, the breakage rates are calculated by taking the product of the last interval as feed and then established as a function of particle size and grinding time. Based on the predetermined breakage rate function, the breakage distribution of the ore is back-calculated from the experimental data using the population balance model (PBM). Finally, the obtained breakage parameters are validated and the simulated data are in good agreement with the experimental data. The obtained breakage distribution and the method for breakage rate description are both significant for modeling the full scale ball milling process of bauxite.展开更多
基金Supported by Natural Science Foundation of Tianjin(No.09JCYBJC07700)
文摘A new explicit quadratic radical function is found by numerical experiments,which is simpler and has only 70.778%of the maximal distance error compared with the Fisher z transformation.Furthermore,a piecewise function is constructed for the standard normal distribution:if the independent variable falls in the interval(-1.519,1.519),the proposed function is employed;otherwise,the Fisher z transformation is used.Compared with the Fisher z transformation,this piecewise function has only 38.206%of the total error.The new function is more exact to estimate the confidence intervals of Pearson product moment correlation coefficient and Dickinson best weights for the linear combination of forecasts.
基金Supported by the Fundamental Research Funds for the Central Universities (2012QNZT069)the Postdoctoral Science Foundation of China (2012M521413)+1 种基金the National Science Fund for Distinguished Young Scholars of China (61025015)the National Natural Science Foundation of China (61273187, 61273159)
文摘Laboratory tests were carried out to study the breakage kinetics of diasporic bauxite and determine its breakage distribution function. Non-first order breakage with different deceleration rates for different size intervals is found, which is most probably caused by the heterogeneity of the ore. Piecewise linearization method is proposed to describe the non-first order breakage according to its characteristics. In the method, grinding time is divided into several intervals and breakage is assumed to be first order in each interval. So, the breakage rates are calculated by taking the product of the last interval as feed and then established as a function of particle size and grinding time. Based on the predetermined breakage rate function, the breakage distribution of the ore is back-calculated from the experimental data using the population balance model (PBM). Finally, the obtained breakage parameters are validated and the simulated data are in good agreement with the experimental data. The obtained breakage distribution and the method for breakage rate description are both significant for modeling the full scale ball milling process of bauxite.