A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sedimen...A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sediment concentration has an infinitely large value at the channel bottom and a zero value at the water surface. Based on this formula and the logarithmic ve- locity profile, a theoretical elementary function for the transport rate of a suspended load is developed. This equation improves the Einstein equation in which the unit-width suspended sediment discharge must be solved by numerical integration and a contra- diction between the lower limit of the integral and that of velocity distribution exists.展开更多
Petrographic analysis combined with various techniques, such as scanning electron microscopy and X-ray diffraction, was used to assess the timing of growth and original mineral cements, the controls on reservoir and r...Petrographic analysis combined with various techniques, such as scanning electron microscopy and X-ray diffraction, was used to assess the timing of growth and original mineral cements, the controls on reservoir and reservoir quality of the fourth member sandstones of Shahejie formation (Es4). The Es4 sandstones are mostly arkose and lithic arkose, rarely feldspathic litharenite, with an average mass fraction of quartz 51.6%, feldspar 33.8% and rock fragments 14.6% (Q51.6F33.8R14.6). They have an average framework composition (mass fraction) of quartz 57.10%, K-feldspar 5.76%, sodium-calcium feldspar 13.00%, calcite 5.77%, dolomite 5.63%, siderite 0.95%, pyrite 0.30%, anhydrite 0.04%, and clay mineral 11.46%. The diagenentic minerals typically include kaolinite, illite-smectite (I/S), illite, chlorite, authigenetic quartz and feldspar, and carbonate and pyrite. Es4 sandstone has undergone stages A and B of eodiagenesis, and now, it is experiencing stage A of mesodiagenesis. Reservoir quality is predominantly controlled by the mechanical compaction, for example, 45.65% of the original porosity loss is related to compaction. The original porosity loss related with cementation is only 26.00%. The reservoir quality is improved as a result of dissolution of feldspar, rock fragment and so forth. The porosity evolved from dissolution varies from 3% to 4%.展开更多
AIM: To identify and understand the regular distribution pattern and primary penetration site for Salmonella enteritidis (S. enteritidis) in the gastrointestinal tract. METHODS: Based on the species-specific DNA seque...AIM: To identify and understand the regular distribution pattern and primary penetration site for Salmonella enteritidis (S. enteritidis) in the gastrointestinal tract. METHODS: Based on the species-specific DNA sequence of S. enteritidis from GenBank, a species-specific real- time, fluorescence-based quantitative polymerase chain reaction (FQ-PCR) was developed for the detection of S. enteritidis. We used this assay to detect genomic DNA of S. enteritidis in the gastrointestinal tract, including duodenum, jejunum, ileum, cecum, colon, rectum, esophagus and stomach, from mice after oral infection. RESULTS: S. enteritidis was consistently detected in all segments of the gastrointestinal tract. The jejunum and ileum were positive at 8 h post inoculation, and the final organ to show a positive result was the stomach at 18 h post inoculation. The copy number of S. enteritidis DNA in each tissue reached a peak at 24-36 h post inoculation, with the jejunum, ileum and cecum containing high concentrations of S. enteritidis, whereas the duodenum, colon, rectum, stomach and esophagus had low concentrations. S. enteritidis began to decrease and vanished at 2 d post inoculation, but it was still present up to 5 d post inoculation in the jejunum, ileum andcecum, without causing apparent symptoms. By 5 d post inoculation, the cecum had significantly higher numbers of S. enteritidis than any of the other areas (P < 0.01), and this appeared to reflect its function as a repository for S. enteritidis. CONCLUSION: The results provided significant data for clarifying the pathogenic mechanism of S. enteritidis in the gastrointestinal tract, and showed that the jejunum, ileum and cecum are the primary sites of invasion in normal mice after oral infection. This study will help to further understanding of the mechanisms of action of S. enteritidis.展开更多
Many factors can affect the sediment deposition and soil erosion process in riparian zone, including terrain, sediment transport and water level fluctuations. Clarifying the factors influencing sediment deposition pro...Many factors can affect the sediment deposition and soil erosion process in riparian zone, including terrain, sediment transport and water level fluctuations. Clarifying the factors influencing sediment deposition process in the riparian zone of the Three Gorges Reservoirs is an important problem to determine the key area of sediment deposition and its trend of development in the study area. In order to reveal the influence of these environmental factors on the sediment deposition in riparian zone of the Three Gorges Reservoir, this study investigated 1) the amount of deposited sediment in different environmental conditions, 2) the potential factors affecting sediment deposition in riparian zone of the Three Gorges Reservoir, 3) the relationship between the deposited sediment amount and these factors previously mentioned using correlation analysis, and 4) the influence of human activities considered as an additional factor. This study found that 1) slope gradient, elevation, inundating duration and human activities were the main factors influencing sedimentation in riparian zone of the Three Gorges Reservoir, and 2) the impact of each factor varied with spaces. Specifically, in the upper reach from Jiangjin to Fuling, human activities such as gravel dredging, bank revetment and ports and wharfs constructing disturbed considerable amounts of deposited sediment, as a result, there was no natural law to dictate the distribution. In the middle reach from Fuling to Fengjie, slope gradient and inundating duration were the controlling factors, and the sediment deposition amount was greater in the areas with a gentler slope or lower elevation. Water flow on gentler slopes generally had lower velocity, resulting in more sediment to deposit. Sites with lower elevations would be drowned by sediment-laden flow with a longer duration resulting from hydrologic regime controlled by the operating strategy of the Three Gorges Reservoir, leading to a larger amount of sediment deposition. In the lower reach from Fengjie to Zigni, slope gradient was similar to the middle reach, performing a primary factor, while other factors showed little relationship with sediment amount.展开更多
Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the ad...Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.展开更多
Post-fire field measurements of sediment and run off yield were undertaken in natural rainfall event-basis during five rainy months in Korea on a total of 15 small plots: four replica burned unseeded plots, six replic...Post-fire field measurements of sediment and run off yield were undertaken in natural rainfall event-basis during five rainy months in Korea on a total of 15 small plots: four replica burned unseeded plots, six replica burned seeded plots, and five replica unburned plots. The main aim was to evaluate the effects of vegetation recovery and spatial distribution patterns on sediment and runoff response between and within the treatment replica erosion plots. Sixyears after the wildfire, total sediment and runoff yield in the burned unseeded plots with 20%-30%vegetation cover was still 120.8 and 20.6 times higher than in the unburned treatment plots with 100%ground cover, 8.3 and 6.7 times higher than in the burned seeded plots with 70%-80% vegetation cover,while only 1.6 and 2.0 times higher than in the burned seeded plots with 50%-60% vegetation cover,respectively. The differences in sediment and runoff yield between the treatment plots was proportional to total vegetation cover, distance of bare soil to vegetation cover, magnitude of rainfall characteristics and changes in soil properties, but not slope gradient.Three out of the six within-treatment pairs of two replica plots showed large differences in sediment and runoff yield of up to 6.0 and 4.2 times and mean CV of up to 99.1% and 62.2%, respectively. This was due to differences in the spatial distribution patterns of surface cover features, including aggregation of vegetation and litter covers, the distance of bare soil exposed to vegetation cover closer to the plot sediment collector and micro topographic mounds and sinks between pairs of replica plots. Small differences in sediment and runoff of only 0.9-1.4folds and mean CV of 8.6%-25% were observed where the within-treatment pairs of replica plots had similar slope, total surface cover components and comparable spatial distribution pattern of vegetation and bare soil exposed surface covers. The results indicated that post-fire hillslopes undergoing effective vegetation recovery have the potential to reduce sediment and runoff production nearer to unburned levels within 6-years after burning while wildfire impacts could last more than 6-years on burned unseeded ridge slopes undergoing slow vegetation recovery.展开更多
The Yellow River basin is well known for its high sediment yield. However, this sediment yield has clearly decreased since the 1980 s, especially after the year 2000. The annual average sediment yield was 1.2 billion ...The Yellow River basin is well known for its high sediment yield. However, this sediment yield has clearly decreased since the 1980 s, especially after the year 2000. The annual average sediment yield was 1.2 billion tons before 2000, but has significantly decreased to 0.3 billion tons over the last 10 years. Changes in discharge and sediment yield for the Yellow River have attracted the attention of both the Central Government and local communities. This study aimed to identify the individual contributions of changes in precipitation and human activities(e.g. water conservancy projects, terracing, silt dams, socio-economic and needs, and soil and water conservation measures) to the decrease in discharge and sediment yield of the Yellow River. The study used both improved the hydrological method and the soil and water conservation method. The study focused on discharge analysis for the upper reaches and the investigation of sediments for the middle reaches of the river. The results showed that discharge and sediment yield have both presented significant decreasing trends over the past 50 years. Precipitation showed an insignificant decreasing trend over the same period. The annual average discharge decreased by 5.68 billion m3 above Lanzhou reach of the Yellow River from 2000 to 2012; human activities(e.g. socio-economic water use) contributed 43.4% of the total reduction, whereas natural factors(e.g. evaporation from lakes, wetlands and reservoirs) accounted for 56.6%. The decrease in annual discharge and sediment yield of the section between Hekouzhen station and Tongguan station were 12.4 billion m3 and 1.24 billion tons, respectively. Human activities contributed 76.5% and 72.2% of the total reduction in discharge and sediment yield, respectively, and were therefore the dominant factors in the changes in discharge and sediment yield of the Yellow River.展开更多
Up to now, all analysis of the distribution of water vapor over the Taklimakan desert area only depends on limited ground measurements and radio soundings setting mostly on the outer margin area. This paper establishe...Up to now, all analysis of the distribution of water vapor over the Taklimakan desert area only depends on limited ground measurements and radio soundings setting mostly on the outer margin area. This paper establishes an approach to retrieve the water vapor over the desert at high temporal and spatial resolutions by the use of FY2C geostationary satellite split-window channels in cooperation with ground-based GPS water vapor measurement. Results show that the water vapor distribution over the Taklimakan desert is affected highly by topography and surface properties. The outer margin area has generally more water vapor than the inner area. Over the outer margin area, the western part has more water vapor than the eastern part, and the northern part has more than the southern part. The driest area lies to the south of Tazhong, east of Hotan River, and extended to the south boundary of the desert. Similar to elsewhere, water vapor over the desert area shows diurnal, monthly, seasonal and annual variations even at the driest inner area of the desert. In summer, the water vapor is transported from west to east over a long distance along the westerlies at a height between 700-400 hPa and with the average speed of 50 km h-1.展开更多
基金Project (Nos. 50079025 and 40231017) supported by the National Natural Science Foundation of China
文摘A simple formula is proposed to predict the vertical distribution of a suspended load concentration in a 2D steady turbulent flow. The proposed formula significantly improves the well-known Rouse formula where sediment concentration has an infinitely large value at the channel bottom and a zero value at the water surface. Based on this formula and the logarithmic ve- locity profile, a theoretical elementary function for the transport rate of a suspended load is developed. This equation improves the Einstein equation in which the unit-width suspended sediment discharge must be solved by numerical integration and a contra- diction between the lower limit of the integral and that of velocity distribution exists.
基金Project(2006AA09Z336) supported by the National High-Tech Research and Development Program of China
文摘Petrographic analysis combined with various techniques, such as scanning electron microscopy and X-ray diffraction, was used to assess the timing of growth and original mineral cements, the controls on reservoir and reservoir quality of the fourth member sandstones of Shahejie formation (Es4). The Es4 sandstones are mostly arkose and lithic arkose, rarely feldspathic litharenite, with an average mass fraction of quartz 51.6%, feldspar 33.8% and rock fragments 14.6% (Q51.6F33.8R14.6). They have an average framework composition (mass fraction) of quartz 57.10%, K-feldspar 5.76%, sodium-calcium feldspar 13.00%, calcite 5.77%, dolomite 5.63%, siderite 0.95%, pyrite 0.30%, anhydrite 0.04%, and clay mineral 11.46%. The diagenentic minerals typically include kaolinite, illite-smectite (I/S), illite, chlorite, authigenetic quartz and feldspar, and carbonate and pyrite. Es4 sandstone has undergone stages A and B of eodiagenesis, and now, it is experiencing stage A of mesodiagenesis. Reservoir quality is predominantly controlled by the mechanical compaction, for example, 45.65% of the original porosity loss is related to compaction. The original porosity loss related with cementation is only 26.00%. The reservoir quality is improved as a result of dissolution of feldspar, rock fragment and so forth. The porosity evolved from dissolution varies from 3% to 4%.
基金Supported by The National Key Technology R&D Program of China, No. 2004B A901A03Program for Chang Jiang Scholars and Innovative Research Team in University, No. IRTO753+2 种基金Program for New Century Excellent Talents in University, No. NCET-04-0906Sichuan Province Basic Research Program, No. 04JY0290061Program for Key Disciplines Construction of Sichuan Province, No. SZD0418
文摘AIM: To identify and understand the regular distribution pattern and primary penetration site for Salmonella enteritidis (S. enteritidis) in the gastrointestinal tract. METHODS: Based on the species-specific DNA sequence of S. enteritidis from GenBank, a species-specific real- time, fluorescence-based quantitative polymerase chain reaction (FQ-PCR) was developed for the detection of S. enteritidis. We used this assay to detect genomic DNA of S. enteritidis in the gastrointestinal tract, including duodenum, jejunum, ileum, cecum, colon, rectum, esophagus and stomach, from mice after oral infection. RESULTS: S. enteritidis was consistently detected in all segments of the gastrointestinal tract. The jejunum and ileum were positive at 8 h post inoculation, and the final organ to show a positive result was the stomach at 18 h post inoculation. The copy number of S. enteritidis DNA in each tissue reached a peak at 24-36 h post inoculation, with the jejunum, ileum and cecum containing high concentrations of S. enteritidis, whereas the duodenum, colon, rectum, stomach and esophagus had low concentrations. S. enteritidis began to decrease and vanished at 2 d post inoculation, but it was still present up to 5 d post inoculation in the jejunum, ileum andcecum, without causing apparent symptoms. By 5 d post inoculation, the cecum had significantly higher numbers of S. enteritidis than any of the other areas (P < 0.01), and this appeared to reflect its function as a repository for S. enteritidis. CONCLUSION: The results provided significant data for clarifying the pathogenic mechanism of S. enteritidis in the gastrointestinal tract, and showed that the jejunum, ileum and cecum are the primary sites of invasion in normal mice after oral infection. This study will help to further understanding of the mechanisms of action of S. enteritidis.
基金funded by the Chinese Academy of Sciences(Grant Nos.KFJ-EW-STS-008,KFJSW-STS-175)
文摘Many factors can affect the sediment deposition and soil erosion process in riparian zone, including terrain, sediment transport and water level fluctuations. Clarifying the factors influencing sediment deposition process in the riparian zone of the Three Gorges Reservoirs is an important problem to determine the key area of sediment deposition and its trend of development in the study area. In order to reveal the influence of these environmental factors on the sediment deposition in riparian zone of the Three Gorges Reservoir, this study investigated 1) the amount of deposited sediment in different environmental conditions, 2) the potential factors affecting sediment deposition in riparian zone of the Three Gorges Reservoir, 3) the relationship between the deposited sediment amount and these factors previously mentioned using correlation analysis, and 4) the influence of human activities considered as an additional factor. This study found that 1) slope gradient, elevation, inundating duration and human activities were the main factors influencing sedimentation in riparian zone of the Three Gorges Reservoir, and 2) the impact of each factor varied with spaces. Specifically, in the upper reach from Jiangjin to Fuling, human activities such as gravel dredging, bank revetment and ports and wharfs constructing disturbed considerable amounts of deposited sediment, as a result, there was no natural law to dictate the distribution. In the middle reach from Fuling to Fengjie, slope gradient and inundating duration were the controlling factors, and the sediment deposition amount was greater in the areas with a gentler slope or lower elevation. Water flow on gentler slopes generally had lower velocity, resulting in more sediment to deposit. Sites with lower elevations would be drowned by sediment-laden flow with a longer duration resulting from hydrologic regime controlled by the operating strategy of the Three Gorges Reservoir, leading to a larger amount of sediment deposition. In the lower reach from Fengjie to Zigni, slope gradient was similar to the middle reach, performing a primary factor, while other factors showed little relationship with sediment amount.
基金funded by Natural Science Foundation of China (Grants Nos. 11172217, 10932012 and 10972164)
文摘Over the last several decades,various sediment transport capacity formulations have been used by geomorphologists and engineers to calculate fluvial morphological changes.However,it remains poorly understood if the adaptation to capacity could be fulfilled instantly in response to differing inflow discharges and sediment supplies,and thus if the calculation of morphological changes in rivers based on the assumed capacity status is fully justified.Here we present a numerical investigation on this issue.The distance required for sediment transport to adapt to capacity(i.e.,adaptation-to-capacity length) of both bed load and suspended sediment transport is computationally studied using a coupled shallow water hydrodynamic model,in line with varied inlet sediment concentrations.It is found that the adaptation-to-capacity length generally decreases as the Rouse number increases,irrespective of whether the inlet sediment concentration increases or reduces.For cases with vanishing inlet sediment concentration a unified relationship is found between the adaptation-to-capacity length and the Rouse number.Quantitatively,the adaptation-to-capacity length of bed load sediment is limited to tens of times of the flow depth,whilst that of suspended sediment increases substantially with decreasing Rouse number and can be up to hundreds of times of the flow depth.The present finding concurs that bed load sediment transport can adapt to capacity much more rapidly than suspended sediment transport,and it facilitates a quantitative criterion on which the applicability of bed load or suspended sediment transport capacity for natural rivers can be readily assessed.
基金support of‘Forest Science and Technology Projects(Project No.S211216L020210)provided by Korea Forest Service
文摘Post-fire field measurements of sediment and run off yield were undertaken in natural rainfall event-basis during five rainy months in Korea on a total of 15 small plots: four replica burned unseeded plots, six replica burned seeded plots, and five replica unburned plots. The main aim was to evaluate the effects of vegetation recovery and spatial distribution patterns on sediment and runoff response between and within the treatment replica erosion plots. Sixyears after the wildfire, total sediment and runoff yield in the burned unseeded plots with 20%-30%vegetation cover was still 120.8 and 20.6 times higher than in the unburned treatment plots with 100%ground cover, 8.3 and 6.7 times higher than in the burned seeded plots with 70%-80% vegetation cover,while only 1.6 and 2.0 times higher than in the burned seeded plots with 50%-60% vegetation cover,respectively. The differences in sediment and runoff yield between the treatment plots was proportional to total vegetation cover, distance of bare soil to vegetation cover, magnitude of rainfall characteristics and changes in soil properties, but not slope gradient.Three out of the six within-treatment pairs of two replica plots showed large differences in sediment and runoff yield of up to 6.0 and 4.2 times and mean CV of up to 99.1% and 62.2%, respectively. This was due to differences in the spatial distribution patterns of surface cover features, including aggregation of vegetation and litter covers, the distance of bare soil exposed to vegetation cover closer to the plot sediment collector and micro topographic mounds and sinks between pairs of replica plots. Small differences in sediment and runoff of only 0.9-1.4folds and mean CV of 8.6%-25% were observed where the within-treatment pairs of replica plots had similar slope, total surface cover components and comparable spatial distribution pattern of vegetation and bare soil exposed surface covers. The results indicated that post-fire hillslopes undergoing effective vegetation recovery have the potential to reduce sediment and runoff production nearer to unburned levels within 6-years after burning while wildfire impacts could last more than 6-years on burned unseeded ridge slopes undergoing slow vegetation recovery.
基金National Basic Research Program of China,No.2011CB403303National Key Technology R&D Program,No.2013BAC05B04National Natural Science Foundation of China,No.41571276
文摘The Yellow River basin is well known for its high sediment yield. However, this sediment yield has clearly decreased since the 1980 s, especially after the year 2000. The annual average sediment yield was 1.2 billion tons before 2000, but has significantly decreased to 0.3 billion tons over the last 10 years. Changes in discharge and sediment yield for the Yellow River have attracted the attention of both the Central Government and local communities. This study aimed to identify the individual contributions of changes in precipitation and human activities(e.g. water conservancy projects, terracing, silt dams, socio-economic and needs, and soil and water conservation measures) to the decrease in discharge and sediment yield of the Yellow River. The study used both improved the hydrological method and the soil and water conservation method. The study focused on discharge analysis for the upper reaches and the investigation of sediments for the middle reaches of the river. The results showed that discharge and sediment yield have both presented significant decreasing trends over the past 50 years. Precipitation showed an insignificant decreasing trend over the same period. The annual average discharge decreased by 5.68 billion m3 above Lanzhou reach of the Yellow River from 2000 to 2012; human activities(e.g. socio-economic water use) contributed 43.4% of the total reduction, whereas natural factors(e.g. evaporation from lakes, wetlands and reservoirs) accounted for 56.6%. The decrease in annual discharge and sediment yield of the section between Hekouzhen station and Tongguan station were 12.4 billion m3 and 1.24 billion tons, respectively. Human activities contributed 76.5% and 72.2% of the total reduction in discharge and sediment yield, respectively, and were therefore the dominant factors in the changes in discharge and sediment yield of the Yellow River.
基金supported by National Natural Science Foundation of China(Grant Nos. 40675003 and 41075011)
文摘Up to now, all analysis of the distribution of water vapor over the Taklimakan desert area only depends on limited ground measurements and radio soundings setting mostly on the outer margin area. This paper establishes an approach to retrieve the water vapor over the desert at high temporal and spatial resolutions by the use of FY2C geostationary satellite split-window channels in cooperation with ground-based GPS water vapor measurement. Results show that the water vapor distribution over the Taklimakan desert is affected highly by topography and surface properties. The outer margin area has generally more water vapor than the inner area. Over the outer margin area, the western part has more water vapor than the eastern part, and the northern part has more than the southern part. The driest area lies to the south of Tazhong, east of Hotan River, and extended to the south boundary of the desert. Similar to elsewhere, water vapor over the desert area shows diurnal, monthly, seasonal and annual variations even at the driest inner area of the desert. In summer, the water vapor is transported from west to east over a long distance along the westerlies at a height between 700-400 hPa and with the average speed of 50 km h-1.