The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur...The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.展开更多
Laser-induced fluorescence excitation spectra of jet-cooled NiC1 molecules were recorded in the energy range of 12900-15000 cm-1. Six vibronic bands with rotational structure have been observed and assigned to the [13...Laser-induced fluorescence excitation spectra of jet-cooled NiC1 molecules were recorded in the energy range of 12900-15000 cm-1. Six vibronic bands with rotational structure have been observed and assigned to the [13.0]2II3/2(v'=0-5)-X2II3/2(v"=0) transition progression. The relevant rotational constants, significant isotopic shifts, and (equilibrium) molecular parameters have been determined. In addition, the lifetimes of the observed bands have also been measured.展开更多
In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed i...In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to l13K-283K by high- efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20t'h-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.展开更多
The heat generation model and three-dimensional computational fluid dynamics model for lithium ion cells were established with boundary conditions defined.In order to provide a better insight about the behaviors of hi...The heat generation model and three-dimensional computational fluid dynamics model for lithium ion cells were established with boundary conditions defined.In order to provide a better insight about the behaviors of high-power lithium ion cells under realistic discharge conditions,the temperature difference of the cells and an active thermal management system with a pure air-cooling mode were analyzed and predicted with the factors affecting the unevenness of temperature field discussed.The results show a significant effect of the cooling flow rate on the temperature rise of the cells for all discharge rates.Average surface temperatures are relatively uniform at lower discharge rate that makes it easier to control the temperature of the pack.Cell temperatures are expected to rise significantly toward the end of discharge and they show non-uniformity at higher discharge rates.Adequate air flow rate of active cooling is required at high discharge rate and high ambient temperature for practical pack thermal management system.展开更多
基金Projects (50872018, 50902018) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, ChinaProject (090302005) supported by the Basic Research Fund for Northeastern University, China
文摘The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.
基金This work was supported by the National Natural Science Foundation of China (No.21273212, No.20873133, and No.21173205), the National Key Basic Research Program of China (No.2010CB923302), the Chinese Academy of Sciences (No.KJCX2-YW-N24), the FRFCUC (No.WK2340000012), and the USTC-NSRL Joint Funds (No.KY2340000021).
文摘Laser-induced fluorescence excitation spectra of jet-cooled NiC1 molecules were recorded in the energy range of 12900-15000 cm-1. Six vibronic bands with rotational structure have been observed and assigned to the [13.0]2II3/2(v'=0-5)-X2II3/2(v"=0) transition progression. The relevant rotational constants, significant isotopic shifts, and (equilibrium) molecular parameters have been determined. In addition, the lifetimes of the observed bands have also been measured.
文摘In order to resolve the problems of the current air separation process such as the complex process, cumbersome operation and high operating costs, a novel air separation process cooled by LNG cold energy is proposed in this paper, which is based on high-efficiency heat exchanger network and chemical packing separation technology. The operating temperature range of LNG cold energy is widened from 133K-203K to l13K-283K by high- efficiency heat exchanger network and air separation pressure is declined from 0.5MPa to about 0.35MPa due to packing separation technology, thereby greatly improve the energy efficiency. Both the traditional and novel air separation processes are simulated with air handling capacity of 20t'h-1. Comparing with the traditional process, the LNG consumption is reduced by 44.2%, power consumption decrease is 211.5 kWh per hour, which means the annual benefit will be up to 1.218 million CNY. And the exergy efficiency is also improved by 42.5%.
基金supported by the National Natural Science Foundation of China(No.50976011)the Fundamental Research Funds for the Central Universities(No.2009JBM090)
文摘The heat generation model and three-dimensional computational fluid dynamics model for lithium ion cells were established with boundary conditions defined.In order to provide a better insight about the behaviors of high-power lithium ion cells under realistic discharge conditions,the temperature difference of the cells and an active thermal management system with a pure air-cooling mode were analyzed and predicted with the factors affecting the unevenness of temperature field discussed.The results show a significant effect of the cooling flow rate on the temperature rise of the cells for all discharge rates.Average surface temperatures are relatively uniform at lower discharge rate that makes it easier to control the temperature of the pack.Cell temperatures are expected to rise significantly toward the end of discharge and they show non-uniformity at higher discharge rates.Adequate air flow rate of active cooling is required at high discharge rate and high ambient temperature for practical pack thermal management system.