The totally coded method (TCM) reveal the same law which governing the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Based on pure ...The totally coded method (TCM) reveal the same law which governing the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Based on pure code algorithm, it is more efficiency because any figure searching is no longer necessary. The code-series (CS), which are organized from node association table, have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is obvious and it is suited for computer programming. The capability of the computer-aided analysis for the active network, such as operation amplifier network, can be enhanced.展开更多
Nonuniform flow distribution along the radial direction usually exists in a Z-flow type radial flow adsorber,which will decrease the utilization of adsorbent and the switching time and may result in operating safety p...Nonuniform flow distribution along the radial direction usually exists in a Z-flow type radial flow adsorber,which will decrease the utilization of adsorbent and the switching time and may result in operating safety problems in cryogenic air separation.In order to improve the uniformity of the flow distribution along the radial direction in the adsorber,a differential equation is derived through pressure drop analysis in the Z-flow type radial adsorber with a cone in the middle of the central pipe.The differential equation determines the ideal cross-sectional radii of the cone along the axis.The result shows that the cross-sectional radius of the cone should gradually decrease from 0.3 m to zero along the axis to ensure that the process air is distributed uniformly in the Z-flow type radial flow adsorber and the shape of the cone is a little convex.The flow distribution without the cone in the central pipe is compared under different bed porosities.It is demonstrated that the proposed differential equation can provide theoretical support for designing Z-flow type radial flow adsorbers.展开更多
To analyze the interaction between wind turbines and the atmospheric boundary layer, we integrated a large-eddy simulation with an actuator line model and examined the characteristics of wind-turbine loads and wakes w...To analyze the interaction between wind turbines and the atmospheric boundary layer, we integrated a large-eddy simulation with an actuator line model and examined the characteristics of wind-turbine loads and wakes with reference to a corresponding experiment in Gansu. In the simulation, we set the wind turbine to have a rotor diameter of 14.8 m and a tower height of 15.4 m in the center of an atmospheric boundary layer with a 10.6° yaw angle. The results reveal an obviously skewed wake structure behind the rotor due to the thrust component normal to the flow direction. The power spectra of the inflow fluctuation velocity exhibit a region of-5/3 slope, which confirms the ability of large-eddy simulations to reproduce the energy cascade from larger to smaller scales. We found there to be more energy in the power spectrum of the axial velocity, which shows that coherent turbulence structures have more energy in the horizontal direction. By the conjoint analysis of atmospheric turbulence and windturbine loads, we found that when the inflow wind direction changes rapidly, the turbulence kinetic energy and coherent turbulence kinetic energy in the atmospheric turbulence increase, which in turn causes fluctuations in the wind turbine load.Furthermore, anisotropic atmospheric turbulence causes an asymmetric load cycle, which imposes a strike by the turbine blade on the shaft, thereby increasing the fatigue load on the shaft. Our main conclusion is that the atmospheric boundary layer has a strong effect on the evolution of the wake and the structural response of the turbine.展开更多
In the process of storm surge, the seawater often overflows and even destroys the seawall. The buildings near the shore are usually inundated by the seawater through the breach. However, at present, there is little st...In the process of storm surge, the seawater often overflows and even destroys the seawall. The buildings near the shore are usually inundated by the seawater through the breach. However, at present, there is little study focusing on the effects of buildings and breach on the seawall-break flows. In this paper, the lattice Boltzmann (LB) model with nine velocities in two dimensions (1920,9) for the shallow water equations is adopted to simulate the seawall-break flows. The flow patterns and water depth distributions for the seawall-break flows under various densities, layouts and shapes of buildings and different breach discharges, sizes and locations are investigated. It is found that when buildings with a high enough density are perpendicular to the main flow direction, an obvious backwater phenomenon appears near buildings while this phenomenon does not occur when buildings with the same density are paraJlel to the main flow direction. Moreover, it is observed that the occurrence of backwater phenomenon is independent of the building shape. As to the effects of breach on the seawall-break flows, it is found that only when the breach discharge is large enough or the breach size is small enough, the effects of asymmetric distribution of buildings on the seawail-break flows become important. The breach location only changes the flow pattern in the upstream area of the first building that seawater meets, but has little impact on the global water depth distribution.展开更多
Many marine plankton species are motile and perform daily vertical migrations,traveling across water columns over distances of tens of meters.It is intriguing that these tiny and slow swimmers can travel in a certain ...Many marine plankton species are motile and perform daily vertical migrations,traveling across water columns over distances of tens of meters.It is intriguing that these tiny and slow swimmers can travel in a certain direction within a turbulent environment.One way to do that is by exploiting gravitaxis,which is a form of taxis characterised by the directional movement of an organism in response to gravity.Many plankton species are able to generate a gravitational torque(e.g.,due to a nonuniform mass distribution)that reorients them upwards.However,the swimming direction is disturbed by the shearing motions and the velocity fluctuations that characterise oceanic turbulence:these can generate a viscous torque that may destabilize the swimmer.The directed locomotion resulting from the combination of gravitational and viscous torques in a flow is termed gyrotaxis,which is known to lead to a non-uniform spatial accumulation of swimmers in patches or layers.These phenomena depend strongly on the non-linear dynamics that originate from the fluid motions,and the study of gyrotactic swimmers in complex flows is attracting growing attention.Numerical simulations of the Navier-Stokes equations coupled with suitable models of gyrotactic swimmers have proven their capability to provide valuable insight into the dynamical and statistical properties of self-propelled organisms.In this paper,we review recent studies and key findings on gyrotactic swimmers in turbulent flows.First,we introduce the most recent results concerning the orientation and vertical migration of gyrotactic swimmers in isotropic turbulence.Second,we discuss the findings on the accumulation of the swimmers.Last,we review recent progresses concerning the behaviour of gyrotactic swimmers in free-surface turbulence.展开更多
文摘The totally coded method (TCM) reveal the same law which governing the gain calculating for signal flow graph as Mason formula does. This algorithm is carried out merely in the domain of code operation. Based on pure code algorithm, it is more efficiency because any figure searching is no longer necessary. The code-series (CS), which are organized from node association table, have the holo-information nature, so that both the content and the sign of each gain-term can be determined via the coded method. The principle of this method is obvious and it is suited for computer programming. The capability of the computer-aided analysis for the active network, such as operation amplifier network, can be enhanced.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51176164)
文摘Nonuniform flow distribution along the radial direction usually exists in a Z-flow type radial flow adsorber,which will decrease the utilization of adsorbent and the switching time and may result in operating safety problems in cryogenic air separation.In order to improve the uniformity of the flow distribution along the radial direction in the adsorber,a differential equation is derived through pressure drop analysis in the Z-flow type radial adsorber with a cone in the middle of the central pipe.The differential equation determines the ideal cross-sectional radii of the cone along the axis.The result shows that the cross-sectional radius of the cone should gradually decrease from 0.3 m to zero along the axis to ensure that the process air is distributed uniformly in the Z-flow type radial flow adsorber and the shape of the cone is a little convex.The flow distribution without the cone in the central pipe is compared under different bed porosities.It is demonstrated that the proposed differential equation can provide theoretical support for designing Z-flow type radial flow adsorbers.
基金supported by the National Basic Research Program of China(Grant No.2014CB046201) the National Natural Science Foundation of China(Grant Nos.51465033,51766009,and 51479114)+2 种基金 the Thousand Talents Program,NSFC-RCUK_EPSRC,the platform construction of ocean energy comprehensive supporting service(2014)(Grant No.GHME2014ZC01) the High-tech Ship Research Projects Sponsored by MIITC Floating Support platform project(Grant No.201622) the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University
文摘To analyze the interaction between wind turbines and the atmospheric boundary layer, we integrated a large-eddy simulation with an actuator line model and examined the characteristics of wind-turbine loads and wakes with reference to a corresponding experiment in Gansu. In the simulation, we set the wind turbine to have a rotor diameter of 14.8 m and a tower height of 15.4 m in the center of an atmospheric boundary layer with a 10.6° yaw angle. The results reveal an obviously skewed wake structure behind the rotor due to the thrust component normal to the flow direction. The power spectra of the inflow fluctuation velocity exhibit a region of-5/3 slope, which confirms the ability of large-eddy simulations to reproduce the energy cascade from larger to smaller scales. We found there to be more energy in the power spectrum of the axial velocity, which shows that coherent turbulence structures have more energy in the horizontal direction. By the conjoint analysis of atmospheric turbulence and windturbine loads, we found that when the inflow wind direction changes rapidly, the turbulence kinetic energy and coherent turbulence kinetic energy in the atmospheric turbulence increase, which in turn causes fluctuations in the wind turbine load.Furthermore, anisotropic atmospheric turbulence causes an asymmetric load cycle, which imposes a strike by the turbine blade on the shaft, thereby increasing the fatigue load on the shaft. Our main conclusion is that the atmospheric boundary layer has a strong effect on the evolution of the wake and the structural response of the turbine.
基金Supported by the National Natural Science Foundation of China under Grant No.11502124the Natural Science Foundation of Zhejiang Province under Grant No.LQ16A020001+2 种基金the Scientific Research Fund of Zhejiang Provincial Education Department under Grant No.Y201533808the Natural Science Foundation of Ningbo under Grant No.2016A610075sponsored by K.C.Wong Magna Fund in Ningbo University
文摘In the process of storm surge, the seawater often overflows and even destroys the seawall. The buildings near the shore are usually inundated by the seawater through the breach. However, at present, there is little study focusing on the effects of buildings and breach on the seawall-break flows. In this paper, the lattice Boltzmann (LB) model with nine velocities in two dimensions (1920,9) for the shallow water equations is adopted to simulate the seawall-break flows. The flow patterns and water depth distributions for the seawall-break flows under various densities, layouts and shapes of buildings and different breach discharges, sizes and locations are investigated. It is found that when buildings with a high enough density are perpendicular to the main flow direction, an obvious backwater phenomenon appears near buildings while this phenomenon does not occur when buildings with the same density are paraJlel to the main flow direction. Moreover, it is observed that the occurrence of backwater phenomenon is independent of the building shape. As to the effects of breach on the seawall-break flows, it is found that only when the breach discharge is large enough or the breach size is small enough, the effects of asymmetric distribution of buildings on the seawail-break flows become important. The breach location only changes the flow pattern in the upstream area of the first building that seawater meets, but has little impact on the global water depth distribution.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11911530141 and 91752205).
文摘Many marine plankton species are motile and perform daily vertical migrations,traveling across water columns over distances of tens of meters.It is intriguing that these tiny and slow swimmers can travel in a certain direction within a turbulent environment.One way to do that is by exploiting gravitaxis,which is a form of taxis characterised by the directional movement of an organism in response to gravity.Many plankton species are able to generate a gravitational torque(e.g.,due to a nonuniform mass distribution)that reorients them upwards.However,the swimming direction is disturbed by the shearing motions and the velocity fluctuations that characterise oceanic turbulence:these can generate a viscous torque that may destabilize the swimmer.The directed locomotion resulting from the combination of gravitational and viscous torques in a flow is termed gyrotaxis,which is known to lead to a non-uniform spatial accumulation of swimmers in patches or layers.These phenomena depend strongly on the non-linear dynamics that originate from the fluid motions,and the study of gyrotactic swimmers in complex flows is attracting growing attention.Numerical simulations of the Navier-Stokes equations coupled with suitable models of gyrotactic swimmers have proven their capability to provide valuable insight into the dynamical and statistical properties of self-propelled organisms.In this paper,we review recent studies and key findings on gyrotactic swimmers in turbulent flows.First,we introduce the most recent results concerning the orientation and vertical migration of gyrotactic swimmers in isotropic turbulence.Second,we discuss the findings on the accumulation of the swimmers.Last,we review recent progresses concerning the behaviour of gyrotactic swimmers in free-surface turbulence.