Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolu...Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolution and its effect on reservoir-quality of fan delta reservoirs of Es4s in the Bonan sag. The diagenesis is principally characterized by strong compaction, undercompaction, multi-phase of dissolution and cementation. Compaction played a more important role than cementation in destroying the primary porosity of the sandstones. The reservoirs have experienced complicated diagenetic environment evolution of "weak alkalineacid-alkalinity-acid-weak alkalinity" and two-stage of hydrocarbon filling. The diagenetic sequences are summarized as "early compaction/early pyrite/gypsum/calcite/dolomite cementation→feldspar dissolution/the first stage of quartz overgrowth → early hydrocarbon filling→quartz dissolution/anhydrite/Fe-carbonate cementation→Fe-carbonate dissolution/feldspar dissolution/ the second stage of quartz overgrowth→later hydrocarbon filling→later pyrite cementation. In the same diagenetic context, the diagenetic evolution processes that occurred in different sub/micro-facies during progressive burial have resulted in heterogeneous reservoir properties and oiliness. The braided channel reservoirs in fan delta plain are poorly sorted with high matrix contents. The physical properties decrease continually due to the principally strong compaction and weak dissolution. The present properties of braided channel reservoirs are extremely poor, which is evidenced by few oil layers developed in relatively shallow strata while dry layers entirely in deep. The reservoirs both in the underwater distributary channels and mouth bars are well sorted and have a strong ability to resist compaction. Abundant pores are developed in medium-deep strata because of modifications by two-stage of acidic dissolution and hydrocarbon filling. The present properties are relatively well both in the underwater distributary channels and mouth bars and plenty of oil layers are developed in different burial depth. The present reservoir properties both in interdistributary channel and pre-fan delta are poor caused by extensively cementation. Small amounts of oil layers, oil-water layers and oil-bearing layers are developed in relatively shallow strata while dry layers totally in deep.展开更多
In most studies of tunnel boring machine(TBM)tunnelling, the groundwater pressure was not considered, or was simplified and exerted on the boundary of lining structure. Meanwhile, the leakage, which mainly occurs in t...In most studies of tunnel boring machine(TBM)tunnelling, the groundwater pressure was not considered, or was simplified and exerted on the boundary of lining structure. Meanwhile, the leakage, which mainly occurs in the segment joints, was often ignored in the relevant studies of TBM tunnelling. Additionally, the geological models in these studies were simplified to different extents, and mostly were simplified as homogenous bodies. Considering the deficiencies above, a 3D refined model of the surrounding rock of a tunnel is firstly established using NURBS-TIN-BRe P hybrid data structure in this paper. Then the seepage field of the surrounding rock considering the leakage in the segment joints is simulated. Finally, the stability of TBM water diversion tunnel is studied coupled with the seepage simulation, to analyze the stress-strain conditions, the axial force and the bending moment of tunnel segment considering the leakage in the segment joints. The results illustrate that the maximum radial displacement, the minimum principal stress, the maximum principal stress and the axial force of segment lining considering the seepage effect are all larger than those disregarding the seepage effect.展开更多
The water and sediment discharge regulation (WSDR) project, which has been performed since 2002 before flood season every year, is of great significance to the river management in China. Until 2007, six experiments ...The water and sediment discharge regulation (WSDR) project, which has been performed since 2002 before flood season every year, is of great significance to the river management in China. Until 2007, six experiments have been fulfilled to evaluate the effect of the project on the natural environment. To fill the gap of investigations, a study on flood and suspended sediment transportation and channel changing along the distributary channel of the Huanghe (Yellow) River was conducted during the WSDR project period in 2007. The lower channel was scoured rapidly and the channel became unobstructed gradually several days after the flood peak water was discharged from the Xiaolangdi Reservoir. Within four days after the flood peak at 3 000 m3/s entered the distributary, the channel in the river mouth area was eroded quickly. Both the mean values of area and depth of the main channel were tripled, and the maximum flood carrying capacity increased to 5 500 m3/s or more. Then, the river channel was silted anew in a very short time after completion of the WSDR. Favored by the WSDR project, the fiver status in April 2008 became better than that of the year before. The adjustment ranges of main channel parameters were about 30%, 10%, and 10% at sections C2, Q4, and Q7, respectively. The process of rapid erosion-deposition was more active 15 km away in the channel from the fiver mouth due to the marine influence. It is reasonable for discharging sediment at concentration peak from Xiaolangdi Reservoir at the end of the flood peak. As a result, the sediment peak reached the river mouth about two days later than that of the water current. In addition, the WSDR project has improved the development of the estuarine wetland. Wetland vegetation planted along the river banks restrained the water flow as a strainer and improved the main channel stability. It is suggested to draw water at mean rate of 150 m3/s from the Huanghe River during flood periods, because at the rate the water in the wetland would be stored and replenished in balance. Moreover, we believe that cropland on the river shoal of the lower Huanghe River should be replaced by wetland. These activities should achieve the Huanghe River management strategy of "To concentrate flow to scour sediment, stabilize the main channel, and regulate water and sediment".展开更多
In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different para...In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different parameters investigated by means of observation and a high-speed camera.Since the appearance of spiral flow makes the distribution of twophase flow more complicated,the flow patterns appearing in the experiments were divided into the Spiral Wavy Stratified Flow(SWS),the Spiral Bubble Flow(SB),the Spiral Slug Flow(SS),the Spiral Linear Flow(SL),the Spiral Axial Flow(SA),and the Spiral Dispersed Flow(SD) by the observations and with reference to the predecessors' research achievements.A flow pattern map has been drawn up.The influence of velocity,vane angle and vane area on flow pattern conversion boundary and pressure drop has been studied,with a solid foundation laid for the future research work.展开更多
As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine p...As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine pipeline in the experiments. A high accuracy instrument ADV and high precision point-type pressure sensors were used to measure the parameters of the flow field, including the pressure distribution, velocities at seven cross sections near the submarine pipeline with five different clearance ratios, and twelve dynamic pressure values around the pipeline. The pressure distributions and velocity changes around the pipe under dif- ferent flow velocities and clearance ratios were analyzed. These results might be useful for further study of submarine pipeline ero- sion and protection.展开更多
There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow ...There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels.展开更多
The Nenjiang Formation in the Songliao Basin is a symmetrical sequence of progradation-retrogradation,and is formed in the transgression cycle and regression cycle(T-R cycles)of the base level of deposition.We analyze...The Nenjiang Formation in the Songliao Basin is a symmetrical sequence of progradation-retrogradation,and is formed in the transgression cycle and regression cycle(T-R cycles)of the base level of deposition.We analyzed the drilling,well logging,core data,and seismic profiles of basin level,and by using the sequence stratigraphy,identified one secondary sequence boundary,two third-order sequence boundaries,and eight fourth-order sequence boundaries in the Nenjiang Formation.These eleven sequence boundaries can be divided into structural unconformity,depositional unconformity,flooding surface,and forced regression surface.Therefore the Nenjiang Formation can be subdivided into one secondary sequence,three third-order sequences,and ten fourth-order sequences.We have restored the sedimentary filling evolution within the stratigraphic framework of fourth-order sequences in the Nenjiang Formation.The sedimentary period of the first member of the Nenjiang Formation was corresponded to the global transgression period,which is also the development period of transgression cycle(T cycle),when the lake basin had the largest scope and deepest sedimentary water,the SB07(the maximum flooding surface)was formed on the top of strata during this period;covering above the SB07,there developed a set of condensation layer-oil shale,which is distributed in the whole basin and is the important source bed and regional cover.Therefore,a retrogradation sequence was formed in the T cycle of the first member of the Nenjiang Formation,characterized by the retrograding delta at a low angle.The delta has a giant front,a small plain,and many underwater distributary channels.Meanwhile,large gravity flow channels and sublacustrine fans are developed in the front of the delta.During the depositional period of the second member of the Nenjiang Formation,the R cycle began to develop due to the compression of the pacific tectonic domain;the source direction rotated 90°along with the eastern uplifting of the basin,and formed a series of east-west prograded and forced retrogradations.The prograding delta at high angel was developed in the interior of the sequence;the delta had a small front,a giant plain,and fewer underwater distributary channels,with the collapse at the foreslope,forming a series of slump fans.The slump fans can be divided into three types:discrete type,superimposed type,and fluid type.We built a whole"triad model"of the slump fan.Pointed out that the sequence of forced retrogradation formed by R cycle is a good structural mark of basin optimization,and rejected the viewpoint of"transgression"in the Nenjiang Formation of the Songliao Basin.展开更多
Densification of reservoir is an important factor that restricts oil and gas exploration from low porosity and extra-low permeability reservoirs. Carbonate cementation was heavily developed in Chang 6 sandbody, a faci...Densification of reservoir is an important factor that restricts oil and gas exploration from low porosity and extra-low permeability reservoirs. Carbonate cementation was heavily developed in Chang 6 sandbody, a facies of underwater distributary channel in delta front, of Upper Triassic Yanchang Formation in Fuxian area, southern Ordos Basin, and the cementation is one of the major factors that affect quality of reservoir. Based on the macro-microcosmic petrology and geochemistry features, the genesis of densification of carbonate-cemented reservoir was systematically discussed. The carbonate cementation can be classified into endogenous and exogenous, and the essential differences between them are that they were formed in different fluids and in different diagenesis periods. With the aid of identification of thin sections, analyses on electron probe, trace and rare-earth elements, carbon and oxygen isotope, we propose that the endogenous fluid for cementation came from the rock itself during early diagenetic stage. The minerals related to endogenous fluid had good shapes. The reservoir property was enhanced with porosity increasing by 3%-8% because of later dissolution by endogenous fluid. The exogenous fluid might be water combining with CO 2 , likely released from organic matter-rich mudstone. Calcite cement, in form of substrate cementation, was precipitated from the fluid and filled in the remaining pores of sandstones in late diagenetic stage as variations of physical and chemical conditions. The exogenous cement reduced rock porosity, damaged reservoir property, affected some oil enrichment, and seriously caused Chang 6 reservoir densification. Some of the dense layers that formed on top of sandbody could have served as diagenetic traps, and thus the exogenous cementation area could be favorable for oil exploration.展开更多
基金Project(41102058)supported by the National Natural Science Foundation of ChinaProject(2011ZX05006-003)supported by National Oil&Gas Major Project of China+1 种基金Project(U1262203)supported by Key Program for National Natural Science Foundation of ChinaProject(LW140101A)for Excellent Doctoral Dissertation supported by China University of Petroleum,China
文摘Petrographic analysis combined with various techniques, such as thin section identification, fluid inclusions, isotopic data, petro-physical property testing and oil testing results, was used to study diagenetic evolution and its effect on reservoir-quality of fan delta reservoirs of Es4s in the Bonan sag. The diagenesis is principally characterized by strong compaction, undercompaction, multi-phase of dissolution and cementation. Compaction played a more important role than cementation in destroying the primary porosity of the sandstones. The reservoirs have experienced complicated diagenetic environment evolution of "weak alkalineacid-alkalinity-acid-weak alkalinity" and two-stage of hydrocarbon filling. The diagenetic sequences are summarized as "early compaction/early pyrite/gypsum/calcite/dolomite cementation→feldspar dissolution/the first stage of quartz overgrowth → early hydrocarbon filling→quartz dissolution/anhydrite/Fe-carbonate cementation→Fe-carbonate dissolution/feldspar dissolution/ the second stage of quartz overgrowth→later hydrocarbon filling→later pyrite cementation. In the same diagenetic context, the diagenetic evolution processes that occurred in different sub/micro-facies during progressive burial have resulted in heterogeneous reservoir properties and oiliness. The braided channel reservoirs in fan delta plain are poorly sorted with high matrix contents. The physical properties decrease continually due to the principally strong compaction and weak dissolution. The present properties of braided channel reservoirs are extremely poor, which is evidenced by few oil layers developed in relatively shallow strata while dry layers entirely in deep. The reservoirs both in the underwater distributary channels and mouth bars are well sorted and have a strong ability to resist compaction. Abundant pores are developed in medium-deep strata because of modifications by two-stage of acidic dissolution and hydrocarbon filling. The present properties are relatively well both in the underwater distributary channels and mouth bars and plenty of oil layers are developed in different burial depth. The present reservoir properties both in interdistributary channel and pre-fan delta are poor caused by extensively cementation. Small amounts of oil layers, oil-water layers and oil-bearing layers are developed in relatively shallow strata while dry layers totally in deep.
基金Supported by the Foundation for Innovation Research Groups of the National Natural Science Foundation of China(No.51321065)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC29200)Tianjin Natural Science Foundation(No.13JCYBJC19500)
文摘In most studies of tunnel boring machine(TBM)tunnelling, the groundwater pressure was not considered, or was simplified and exerted on the boundary of lining structure. Meanwhile, the leakage, which mainly occurs in the segment joints, was often ignored in the relevant studies of TBM tunnelling. Additionally, the geological models in these studies were simplified to different extents, and mostly were simplified as homogenous bodies. Considering the deficiencies above, a 3D refined model of the surrounding rock of a tunnel is firstly established using NURBS-TIN-BRe P hybrid data structure in this paper. Then the seepage field of the surrounding rock considering the leakage in the segment joints is simulated. Finally, the stability of TBM water diversion tunnel is studied coupled with the seepage simulation, to analyze the stress-strain conditions, the axial force and the bending moment of tunnel segment considering the leakage in the segment joints. The results illustrate that the maximum radial displacement, the minimum principal stress, the maximum principal stress and the axial force of segment lining considering the seepage effect are all larger than those disregarding the seepage effect.
基金Supported by National Key Basic Research Program of China (No. 2005CB422304)National Natural Science Foundation of China (No.40872167)
文摘The water and sediment discharge regulation (WSDR) project, which has been performed since 2002 before flood season every year, is of great significance to the river management in China. Until 2007, six experiments have been fulfilled to evaluate the effect of the project on the natural environment. To fill the gap of investigations, a study on flood and suspended sediment transportation and channel changing along the distributary channel of the Huanghe (Yellow) River was conducted during the WSDR project period in 2007. The lower channel was scoured rapidly and the channel became unobstructed gradually several days after the flood peak water was discharged from the Xiaolangdi Reservoir. Within four days after the flood peak at 3 000 m3/s entered the distributary, the channel in the river mouth area was eroded quickly. Both the mean values of area and depth of the main channel were tripled, and the maximum flood carrying capacity increased to 5 500 m3/s or more. Then, the river channel was silted anew in a very short time after completion of the WSDR. Favored by the WSDR project, the fiver status in April 2008 became better than that of the year before. The adjustment ranges of main channel parameters were about 30%, 10%, and 10% at sections C2, Q4, and Q7, respectively. The process of rapid erosion-deposition was more active 15 km away in the channel from the fiver mouth due to the marine influence. It is reasonable for discharging sediment at concentration peak from Xiaolangdi Reservoir at the end of the flood peak. As a result, the sediment peak reached the river mouth about two days later than that of the water current. In addition, the WSDR project has improved the development of the estuarine wetland. Wetland vegetation planted along the river banks restrained the water flow as a strainer and improved the main channel stability. It is suggested to draw water at mean rate of 150 m3/s from the Huanghe River during flood periods, because at the rate the water in the wetland would be stored and replenished in balance. Moreover, we believe that cropland on the river shoal of the lower Huanghe River should be replaced by wetland. These activities should achieve the Huanghe River management strategy of "To concentrate flow to scour sediment, stabilize the main channel, and regulate water and sediment".
基金supported by the National Natural Science Foundation of China (Grant number 51776015)
文摘In view of the importance of gas-liquid two-phase spiral flow and the few research reports at home and abroad,the gas-liquid two-phase spiral flow patterns have been researched in a horizontal pipe with different parameters investigated by means of observation and a high-speed camera.Since the appearance of spiral flow makes the distribution of twophase flow more complicated,the flow patterns appearing in the experiments were divided into the Spiral Wavy Stratified Flow(SWS),the Spiral Bubble Flow(SB),the Spiral Slug Flow(SS),the Spiral Linear Flow(SL),the Spiral Axial Flow(SA),and the Spiral Dispersed Flow(SD) by the observations and with reference to the predecessors' research achievements.A flow pattern map has been drawn up.The influence of velocity,vane angle and vane area on flow pattern conversion boundary and pressure drop has been studied,with a solid foundation laid for the future research work.
文摘As a transport means of oil and gas the submarine pipeline has many merits, such as continuous delivery, large conveying capacity, convenient management, etc. A tube was chosen in our study to simulate the submarine pipeline in the experiments. A high accuracy instrument ADV and high precision point-type pressure sensors were used to measure the parameters of the flow field, including the pressure distribution, velocities at seven cross sections near the submarine pipeline with five different clearance ratios, and twelve dynamic pressure values around the pipeline. The pressure distributions and velocity changes around the pipe under dif- ferent flow velocities and clearance ratios were analyzed. These results might be useful for further study of submarine pipeline ero- sion and protection.
文摘There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels.
基金supported by National Basic Research Program of China(Grant Nos.2006CB701404,2009CB219308)
文摘The Nenjiang Formation in the Songliao Basin is a symmetrical sequence of progradation-retrogradation,and is formed in the transgression cycle and regression cycle(T-R cycles)of the base level of deposition.We analyzed the drilling,well logging,core data,and seismic profiles of basin level,and by using the sequence stratigraphy,identified one secondary sequence boundary,two third-order sequence boundaries,and eight fourth-order sequence boundaries in the Nenjiang Formation.These eleven sequence boundaries can be divided into structural unconformity,depositional unconformity,flooding surface,and forced regression surface.Therefore the Nenjiang Formation can be subdivided into one secondary sequence,three third-order sequences,and ten fourth-order sequences.We have restored the sedimentary filling evolution within the stratigraphic framework of fourth-order sequences in the Nenjiang Formation.The sedimentary period of the first member of the Nenjiang Formation was corresponded to the global transgression period,which is also the development period of transgression cycle(T cycle),when the lake basin had the largest scope and deepest sedimentary water,the SB07(the maximum flooding surface)was formed on the top of strata during this period;covering above the SB07,there developed a set of condensation layer-oil shale,which is distributed in the whole basin and is the important source bed and regional cover.Therefore,a retrogradation sequence was formed in the T cycle of the first member of the Nenjiang Formation,characterized by the retrograding delta at a low angle.The delta has a giant front,a small plain,and many underwater distributary channels.Meanwhile,large gravity flow channels and sublacustrine fans are developed in the front of the delta.During the depositional period of the second member of the Nenjiang Formation,the R cycle began to develop due to the compression of the pacific tectonic domain;the source direction rotated 90°along with the eastern uplifting of the basin,and formed a series of east-west prograded and forced retrogradations.The prograding delta at high angel was developed in the interior of the sequence;the delta had a small front,a giant plain,and fewer underwater distributary channels,with the collapse at the foreslope,forming a series of slump fans.The slump fans can be divided into three types:discrete type,superimposed type,and fluid type.We built a whole"triad model"of the slump fan.Pointed out that the sequence of forced retrogradation formed by R cycle is a good structural mark of basin optimization,and rejected the viewpoint of"transgression"in the Nenjiang Formation of the Songliao Basin.
基金supported by National Science and Technology Major Project (Grant No. 2011ZX05002006)Ministry of Science and Technology Project SINOPEC (Grant No. P11079)
文摘Densification of reservoir is an important factor that restricts oil and gas exploration from low porosity and extra-low permeability reservoirs. Carbonate cementation was heavily developed in Chang 6 sandbody, a facies of underwater distributary channel in delta front, of Upper Triassic Yanchang Formation in Fuxian area, southern Ordos Basin, and the cementation is one of the major factors that affect quality of reservoir. Based on the macro-microcosmic petrology and geochemistry features, the genesis of densification of carbonate-cemented reservoir was systematically discussed. The carbonate cementation can be classified into endogenous and exogenous, and the essential differences between them are that they were formed in different fluids and in different diagenesis periods. With the aid of identification of thin sections, analyses on electron probe, trace and rare-earth elements, carbon and oxygen isotope, we propose that the endogenous fluid for cementation came from the rock itself during early diagenetic stage. The minerals related to endogenous fluid had good shapes. The reservoir property was enhanced with porosity increasing by 3%-8% because of later dissolution by endogenous fluid. The exogenous fluid might be water combining with CO 2 , likely released from organic matter-rich mudstone. Calcite cement, in form of substrate cementation, was precipitated from the fluid and filled in the remaining pores of sandstones in late diagenetic stage as variations of physical and chemical conditions. The exogenous cement reduced rock porosity, damaged reservoir property, affected some oil enrichment, and seriously caused Chang 6 reservoir densification. Some of the dense layers that formed on top of sandbody could have served as diagenetic traps, and thus the exogenous cementation area could be favorable for oil exploration.