Workflow logs that record the execution of business processes offer very valuable data resource for real-time enterprise performance measurement. In this paper, a novel scheme that uses the technology of data warehous...Workflow logs that record the execution of business processes offer very valuable data resource for real-time enterprise performance measurement. In this paper, a novel scheme that uses the technology of data warehouse and OLAP to explore workflow logs and create complex analysis reports for enterprise performance measurement is proposed. Three key points of this scheme are studied: 1) the measure set; 2) the open and flexible architecture for workflow logs analysis system; 3) the data models in WFMS and data warehouse. A case study that shows the validity of the scheme is also provided.展开更多
This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of...This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of the pipe(8%,10%,16% and 25%).Experiments were done to test the important parameters in solid transport(pressure,velocity,etc.).As a result,the relationship between the pressure gradient forces and the mixture velocity was substantially different from the pure liquid flow.However,in a single-phase flow a monotonous behavior of the pressure drop curve is observed,and the curve of the solid particle flow attains its minimum at the critical velocity.The regimes are characterized with differential pressure measurements and visualizations.展开更多
In order to solve the problem of property test of large flow-rate safety, the property parameter of safety valve test system was analyzed, and a device for property oflarge flow-rate safety valve test was designed.The...In order to solve the problem of property test of large flow-rate safety, the property parameter of safety valve test system was analyzed, and a device for property oflarge flow-rate safety valve test was designed.The device used accumulators as power source and a united function cylinder, which can realized the large flow-rate output for the test system.Analyzed the test data and made a particular research on the test device by testing different flow-rate safety valves;it verifies that the test device can be used tode-sign larger flow-rate safety valve test system and can make the flow-rate test and analysis and dynamic characteristics for the large-flow safety valve.展开更多
As flow environment is poor in low permeability reservoirs, wells are always fractured in order to gain better economic benefits. Well testing analysis is very necessary for fracturing wells. However, available test a...As flow environment is poor in low permeability reservoirs, wells are always fractured in order to gain better economic benefits. Well testing analysis is very necessary for fracturing wells. However, available test analysis methods are of slow fitting speed and low fitting precision. In this paper, we first use a comprehensive evaluation method of analytical well testing, numerical well testing and well testing design. Many dynamic parameters such as fracture length, fracture conductivity, skin factor, etc are obtained. An example to illustrate accurate results of this method is given.展开更多
To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the...To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.展开更多
Mini centrifugal pumps having a diameter smaller than lOOmm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized...Mini centrifugal pumps having a diameter smaller than lOOmm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini cen- trifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this re- search to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional unsteady numerical flow analysis was conducted to investigate the change of the internal flow according to the rotor rotation. It is clarified from the experimental results that the performance of the mini cen- trifugal pump is improved by the splitter blades. The blade-to-blade low velocity region was suppressed in the case with the splitter blades. In addition to that, the unsteady flows near the volute casing tongue were suppressed due to the splitter blades. In the present paper, the performance of the mini centrifugal pump is shown and the un- steady flow condition is clarified with the results of the numerical flow analysis. Furthermore, the effects of the splitter blades on the performance and the unsteady internal flow condition are investigated.展开更多
In the field of oil well logging, real-time monitoring of the fluid flow parameter provides a scientific basis for oil and gas optimization exploration and increase in reservoir recovery, so a non-intrusive flow test ...In the field of oil well logging, real-time monitoring of the fluid flow parameter provides a scientific basis for oil and gas optimization exploration and increase in reservoir recovery, so a non-intrusive flow test method based on turbulent vibration was proposed. The specific length of the sensor fiber wound tightly around the outer wall of the pipe was connected with the optical fiber gratings at both ends, and the sensor fiber and the optical fiber gratings composed the flow sensing unit. The dynamic pressure was generated by the turbulence when fluid flows through the pipe, and the dynamic pressure resulted in the light phase shift of the sensor fiber. The phase information was demodulated by the fiber optic interferometer technology, time division multiplexing technology, and phase generated carrier modulation and demodulation techniques. The quadratic curve relationship between the phase change and flow rate was found by experimental data analysis, and the experiment confirmed the feasibility of the optical fiber flow test method with non-intrusion and achieved the real-time monitoring of the fluid flow.展开更多
文摘Workflow logs that record the execution of business processes offer very valuable data resource for real-time enterprise performance measurement. In this paper, a novel scheme that uses the technology of data warehouse and OLAP to explore workflow logs and create complex analysis reports for enterprise performance measurement is proposed. Three key points of this scheme are studied: 1) the measure set; 2) the open and flexible architecture for workflow logs analysis system; 3) the data models in WFMS and data warehouse. A case study that shows the validity of the scheme is also provided.
基金the Dyn Fluid Laboratory at Arts et Métiers Paris Tech
文摘This paper presents an experimental study of the physical characteristic effects of large particles on hydraulic transport in a horizontal pipe.The particles are spherical and are large with respect to the diameter of the pipe(8%,10%,16% and 25%).Experiments were done to test the important parameters in solid transport(pressure,velocity,etc.).As a result,the relationship between the pressure gradient forces and the mixture velocity was substantially different from the pure liquid flow.However,in a single-phase flow a monotonous behavior of the pressure drop curve is observed,and the curve of the solid particle flow attains its minimum at the critical velocity.The regimes are characterized with differential pressure measurements and visualizations.
基金Supported by China Coal Research Institute Innovation Item(2007CX06)
文摘In order to solve the problem of property test of large flow-rate safety, the property parameter of safety valve test system was analyzed, and a device for property oflarge flow-rate safety valve test was designed.The device used accumulators as power source and a united function cylinder, which can realized the large flow-rate output for the test system.Analyzed the test data and made a particular research on the test device by testing different flow-rate safety valves;it verifies that the test device can be used tode-sign larger flow-rate safety valve test system and can make the flow-rate test and analysis and dynamic characteristics for the large-flow safety valve.
文摘As flow environment is poor in low permeability reservoirs, wells are always fractured in order to gain better economic benefits. Well testing analysis is very necessary for fracturing wells. However, available test analysis methods are of slow fitting speed and low fitting precision. In this paper, we first use a comprehensive evaluation method of analytical well testing, numerical well testing and well testing design. Many dynamic parameters such as fracture length, fracture conductivity, skin factor, etc are obtained. An example to illustrate accurate results of this method is given.
基金supported by grants from the National Natural Science Foundation of China (No.51076144)the Major Special Project of Technology Office in Zhejiang Province (No.2011C11073, No.2011C16038)
文摘To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-e turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.
文摘Mini centrifugal pumps having a diameter smaller than lOOmm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini cen- trifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this re- search to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional unsteady numerical flow analysis was conducted to investigate the change of the internal flow according to the rotor rotation. It is clarified from the experimental results that the performance of the mini cen- trifugal pump is improved by the splitter blades. The blade-to-blade low velocity region was suppressed in the case with the splitter blades. In addition to that, the unsteady flows near the volute casing tongue were suppressed due to the splitter blades. In the present paper, the performance of the mini centrifugal pump is shown and the un- steady flow condition is clarified with the results of the numerical flow analysis. Furthermore, the effects of the splitter blades on the performance and the unsteady internal flow condition are investigated.
文摘In the field of oil well logging, real-time monitoring of the fluid flow parameter provides a scientific basis for oil and gas optimization exploration and increase in reservoir recovery, so a non-intrusive flow test method based on turbulent vibration was proposed. The specific length of the sensor fiber wound tightly around the outer wall of the pipe was connected with the optical fiber gratings at both ends, and the sensor fiber and the optical fiber gratings composed the flow sensing unit. The dynamic pressure was generated by the turbulence when fluid flows through the pipe, and the dynamic pressure resulted in the light phase shift of the sensor fiber. The phase information was demodulated by the fiber optic interferometer technology, time division multiplexing technology, and phase generated carrier modulation and demodulation techniques. The quadratic curve relationship between the phase change and flow rate was found by experimental data analysis, and the experiment confirmed the feasibility of the optical fiber flow test method with non-intrusion and achieved the real-time monitoring of the fluid flow.