Objective To explore the semi-supervised learning(SSL) algorithm for long-tail endoscopic image classification with limited annotations.Method We explored semi-supervised long-tail endoscopic image classification in H...Objective To explore the semi-supervised learning(SSL) algorithm for long-tail endoscopic image classification with limited annotations.Method We explored semi-supervised long-tail endoscopic image classification in HyperKvasir,the largest gastrointestinal public dataset with 23 diverse classes.Semi-supervised learning algorithm FixMatch was applied based on consistency regularization and pseudo-labeling.After splitting the training dataset and the test dataset at a ratio of 4:1,we sampled 20%,50%,and 100% labeled training data to test the classification with limited annotations.Results The classification performance was evaluated by micro-average and macro-average evaluation metrics,with the Mathews correlation coefficient(MCC) as the overall evaluation.SSL algorithm improved the classification performance,with MCC increasing from 0.8761 to 0.8850,from 0.8983 to 0.8994,and from 0.9075 to 0.9095 with 20%,50%,and 100% ratio of labeled training data,respectively.With a 20% ratio of labeled training data,SSL improved both the micro-average and macro-average classification performance;while for the ratio of 50% and 100%,SSL improved the micro-average performance but hurt macro-average performance.Through analyzing the confusion matrix and labeling bias in each class,we found that the pseudo-based SSL algorithm exacerbated the classifier’ s preference for the head class,resulting in improved performance in the head class and degenerated performance in the tail class.Conclusion SSL can improve the classification performance for semi-supervised long-tail endoscopic image classification,especially when the labeled data is extremely limited,which may benefit the building of assisted diagnosis systems for low-volume hospitals.However,the pseudo-labeling strategy may amplify the effect of class imbalance,which hurts the classification performance for the tail class.展开更多
To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating...To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating indicator, which was derived from the convergence condition of EASI, and can be used to evaluate the separation degree of separated signals. Furthermore, a nonlinear monotone increasing function between suitable step sizes and separating indicator is constructed to adaptively adjust step sizes, and forgetting factor is employed to weaken effects of data at the initial stage. Numerical case studies and experimental studies on a test bed with shell structures are provided to validate the efficiency improvement of the proposed method. This study can benefit for vibration & acoustic monitoring and control, and machinery condition monitoring and fault diagnosis.展开更多
文摘Objective To explore the semi-supervised learning(SSL) algorithm for long-tail endoscopic image classification with limited annotations.Method We explored semi-supervised long-tail endoscopic image classification in HyperKvasir,the largest gastrointestinal public dataset with 23 diverse classes.Semi-supervised learning algorithm FixMatch was applied based on consistency regularization and pseudo-labeling.After splitting the training dataset and the test dataset at a ratio of 4:1,we sampled 20%,50%,and 100% labeled training data to test the classification with limited annotations.Results The classification performance was evaluated by micro-average and macro-average evaluation metrics,with the Mathews correlation coefficient(MCC) as the overall evaluation.SSL algorithm improved the classification performance,with MCC increasing from 0.8761 to 0.8850,from 0.8983 to 0.8994,and from 0.9075 to 0.9095 with 20%,50%,and 100% ratio of labeled training data,respectively.With a 20% ratio of labeled training data,SSL improved both the micro-average and macro-average classification performance;while for the ratio of 50% and 100%,SSL improved the micro-average performance but hurt macro-average performance.Through analyzing the confusion matrix and labeling bias in each class,we found that the pseudo-based SSL algorithm exacerbated the classifier’ s preference for the head class,resulting in improved performance in the head class and degenerated performance in the tail class.Conclusion SSL can improve the classification performance for semi-supervised long-tail endoscopic image classification,especially when the labeled data is extremely limited,which may benefit the building of assisted diagnosis systems for low-volume hospitals.However,the pseudo-labeling strategy may amplify the effect of class imbalance,which hurts the classification performance for the tail class.
基金supported by the National Natural Science Foundation of China(Grant No.51305329)the China Postdoctoral Science Foundation(Grant No.2014T70911)+1 种基金the Doctoral Foundation of Education Ministry of China(Grant No.20130201120040)Basic Research Project of Natural Science in Shaanxi Province(Grant No.2015JQ5183)
文摘To balance the convergence rate and steadystate error of blind source separation(BSS) algorithms, an efficient equivariant adaptive separation via independence(Efficient EASI) algorithm is proposed based on separating indicator, which was derived from the convergence condition of EASI, and can be used to evaluate the separation degree of separated signals. Furthermore, a nonlinear monotone increasing function between suitable step sizes and separating indicator is constructed to adaptively adjust step sizes, and forgetting factor is employed to weaken effects of data at the initial stage. Numerical case studies and experimental studies on a test bed with shell structures are provided to validate the efficiency improvement of the proposed method. This study can benefit for vibration & acoustic monitoring and control, and machinery condition monitoring and fault diagnosis.