The structure and single-particle motion of a two-dimensional dusty plasma have been investigated. Pair correlation function, mean square displacement, velocity autocorrelation function, and the corresponding spectrum...The structure and single-particle motion of a two-dimensional dusty plasma have been investigated. Pair correlation function, mean square displacement, velocity autocorrelation function, and the corresponding spectrum function have been computed by molecular dynamical simulation. The results show that the coagulation of a two-dimensional dusty plasma system is strongly affected by particle density and temperature, which are discussed in details.展开更多
This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) metho...This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.展开更多
This paper proposes an automatic structure overset grid method, which utilizes the hole-surface optimization with one-step searching, wall-surface grid oversetting, and dynamic overset grid approaches to achieve the h...This paper proposes an automatic structure overset grid method, which utilizes the hole-surface optimization with one-step searching, wall-surface grid oversetting, and dynamic overset grid approaches to achieve the high adaptability of overset grids for complex multi-body aircrafts. Specifically, based on the automatic structure overset grids, the method first solves the coupling of Navier-Stokes(N-S) unsteady flow equation and 6DOF motion equation, and establishes the multi-body collision model. Then, the numerical simulation of unsteady flow for complex aircrafts' multi-body separation, the simulation of multi-body separating trajectory and the separation safety analysis are accomplished. Thus, the method can properly handle practical engineering problems including the wing/drop tank separation, aircraft/mount separation, and cluster bomb projection. Experiments show that our numerical results match well with experimental results, which demonstrates the effectiveness of our methods in solving the multi-body separation problem for aircrafts with complex shapes.展开更多
Recently, many programs have been developed for simulation or analysis of the different parameters of light propagation in optical fibers, either for sensing or for communication purposes. In this paper, it is shown t...Recently, many programs have been developed for simulation or analysis of the different parameters of light propagation in optical fibers, either for sensing or for communication purposes. In this paper, it is shown the COMSOL Multiphysics as a fairly robust and simple program, due to the existence of a graphical environment, to perform simulations with good accuracy. Results are compared with other simulation analysis, focusing on the surface plasmon resonance (SPR) phenomena for refractive index sensing in a D-type optical fiber, where the characteristics of the material layers, in terms of the type and thickness, and the residual fiber cladding thickness are optimized.展开更多
文摘The structure and single-particle motion of a two-dimensional dusty plasma have been investigated. Pair correlation function, mean square displacement, velocity autocorrelation function, and the corresponding spectrum function have been computed by molecular dynamical simulation. The results show that the coagulation of a two-dimensional dusty plasma system is strongly affected by particle density and temperature, which are discussed in details.
基金Supported by the National Natural Science Foundation of China (60801052)Aeronautical Science Foundation of China (2009ZC52036)
文摘This paper introduces a new source separation technique exploiting the time coherence of the source signals. The proposed approach relies only on stationary second order statistics. Blind Signal Separation (BSS) method using trilinear decomposition is proposed in this paper. Simulation results reveal that our proposed algorithm has the better blind signal separation performance than joint diagonalization method. Our proposed algorithm does not require whitening processing. Moreover, our proposed algorithm works well in the underdetermined condition, where the number of sources exceeds than the number of sensors.
文摘This paper proposes an automatic structure overset grid method, which utilizes the hole-surface optimization with one-step searching, wall-surface grid oversetting, and dynamic overset grid approaches to achieve the high adaptability of overset grids for complex multi-body aircrafts. Specifically, based on the automatic structure overset grids, the method first solves the coupling of Navier-Stokes(N-S) unsteady flow equation and 6DOF motion equation, and establishes the multi-body collision model. Then, the numerical simulation of unsteady flow for complex aircrafts' multi-body separation, the simulation of multi-body separating trajectory and the separation safety analysis are accomplished. Thus, the method can properly handle practical engineering problems including the wing/drop tank separation, aircraft/mount separation, and cluster bomb projection. Experiments show that our numerical results match well with experimental results, which demonstrates the effectiveness of our methods in solving the multi-body separation problem for aircrafts with complex shapes.
文摘Recently, many programs have been developed for simulation or analysis of the different parameters of light propagation in optical fibers, either for sensing or for communication purposes. In this paper, it is shown the COMSOL Multiphysics as a fairly robust and simple program, due to the existence of a graphical environment, to perform simulations with good accuracy. Results are compared with other simulation analysis, focusing on the surface plasmon resonance (SPR) phenomena for refractive index sensing in a D-type optical fiber, where the characteristics of the material layers, in terms of the type and thickness, and the residual fiber cladding thickness are optimized.