Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element metho...Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element method. Then, based on the competition theory of condensation and percolation, radial segregation due to differences in particle volume and/or density was analyzed. The results show that if either percolation effect induced by volume difference or condensation effect induced by density difference dominates in the active layer of moving bed, separation will occur. Controlling the volume ratio or density ratio of the two types of particles can achieve an equilibrium state between percolation and condensation, and then homogenous mixture can be obtained. When the percolation balances with the condensation, the relationship between volume ratioand density ratiopresents nearly a power function. Scaling up a rotating drum will not affect the mixing degree of the granular bed so long as the volume ratio and density ratio are predefined.展开更多
Numerical analyses of earthquake effects on the deformation, stability, and load transfer of a slope covered by deposits are traditionally based on the assumption that the slope is a continuum. It would be problem...Numerical analyses of earthquake effects on the deformation, stability, and load transfer of a slope covered by deposits are traditionally based on the assumption that the slope is a continuum. It would be problematic, however, to extend these approaches to the simulation of the slide, collapse and disintegration of the deposits under seismic loading. Contrary to this, a discrete element method (DEM) provides a means to consider large displacement and rotation of the non-continuum. To take the advantages of both methods of continuum and non- continuum analyses, seismic responses of a slope covered by deposits are studied by coupling a twodimensional (a-D) finite difference method and a 2-D DEM, with the bedrock being modelled by the finite difference grids and the deposits being represented by disks. A smooth transition across the boundaries of the continuous/discontinuous domains is obtained by imposing the compatibility condition and equilibrium condition along their interfaces. In the course of computation, the same time-step value is chosen for both continuous and discontinuous domains. The free-field boundaries are adopted for lateral grids of bedrock domain to eliminate the radiation damping effect. When the static equilibrium under gravity load is obtained, dynamic calculation begins under excitation of the seismic wave input from the continuum model bottom. In this way, responses to the earthquake of a slope covered by deposits are analyzed dynamically. Combined with field monitoring data, deformation and stability of the slope are discussed. The effects of the relevant parameters of spectrum characteristic, duration, andpeak acceleration of seismic waves are further investigated and explained from the simulations.展开更多
The discrete element method(DEM) has been widely used to simulate microscopic interactions between particles.Screening is a deeply complicated process when considering the law of motion for the particles,themselves.In...The discrete element method(DEM) has been widely used to simulate microscopic interactions between particles.Screening is a deeply complicated process when considering the law of motion for the particles,themselves.In this paper,a numerical model for the study of a particle screening process using the DEM is presented.Special attention was paid to the modeling of a vibrating screen that allows particles to pass through,or to rebound,when approaching the screen surface.Inferences concerning screen length and vibrating frequency as they relate to screening efficiency were studied.The conclusions were:three-dimensional simulation of screening efficiency along the screen length follows an exponential distribution;when the sieve vibrates over a certain frequency range the screening efficiency is stable;and,higher vibration frequencies can improve the handling capacity of the screening machine.展开更多
The quantitative evaluation of errors involved in a particular numerical modelling is of prime importance for the effectiveness and reliability of the method. Errors in Distinct Element Modelling are generated mainly ...The quantitative evaluation of errors involved in a particular numerical modelling is of prime importance for the effectiveness and reliability of the method. Errors in Distinct Element Modelling are generated mainly through three resources as simplification of physical model, determination of parameters and boundary conditions. A measure of errors which represent the degree of numerical solution 'close to true value' is proposed through fuzzy probability in this paper. The main objective of this paper is to estimate the reliability of Distinct Element Method in rock engineering practice by varying the parameters and boundary conditions. The accumulation laws of standard errors induced by improper determination of parameters and boundary conditions are discussed in delails. Furthermore, numerical experiments are given to illustrate the estimation of fuzzy reliability. Example shows that fuzzy reliability falls between 75%-98% when the relative standard errors of input data is under 10 %.展开更多
New polyimide containing calix [4] arene moieties on the polymer backbone was successfully synthesized in N- methy1 - 2 - pyrrolidone (NMP) by polycondensations of 3, 3', 4, 4'- oxydiphthalic anhydride (ODPA) wi...New polyimide containing calix [4] arene moieties on the polymer backbone was successfully synthesized in N- methy1 - 2 - pyrrolidone (NMP) by polycondensations of 3, 3', 4, 4'- oxydiphthalic anhydride (ODPA) with the diaminocalix[4]arene monomer using 3,3'- dimethy1- 4, 4'- The polyimide prepared is soluble in common solvents, such as NMP, DMAc, DMF and chloroform. The polyimide films obtained have excellent thermal stability and mechanical property. At the same time, the liquid membrane transport of potassium ions by the new polyimide was investigated, which testified that compared to ODPA-DADPM polyimide, the polyimide containing culix[4] arenes has the transport ability to metal ions in regard to bulky, cone-like calix [-4] arene moieties.展开更多
The landslide disaster caused by the argillaceous interlayer not only destroys buildings,cultivated land,and roads but also seriously endangers human life and safety.This study concerns the mineral composition of sele...The landslide disaster caused by the argillaceous interlayer not only destroys buildings,cultivated land,and roads but also seriously endangers human life and safety.This study concerns the mineral composition of selected argillaceous interlayer and their strength characteristics.To study the mineral composition of argillaceous interlayers,8 kinds of samples in the southern Jiangsu region of China were analyzed utilizing X-ray diffraction(XRD).The repeated direct shear strength tests(RDST)were carried out on the undisturbed specimens of the argillaceous interlayer.The results show that the argillaceous interlayer with high content of kaolinite shows ductile failure mode,which means that there is no obvious residual strength in the shear process.The arrangement of mineral particles on the shear surface of the specimens after different shear displacements was observed under the scanning electron microscope(SEM).It was observed that mineral particles on the shear surface showed a more directional arrangement with the increase of shear displacement.Furthermore,the influence of shear direction on the argillaceous interlayer with completely oriented mineral particles was studied through numerical experiments with four shear strength mechanisms proposition proposed.The influence of the mineral arrangement on the action occasion and magnitude of dilatancy component of shear strength is clarified in the shear mechanism.展开更多
Screening was widely used in many sectors of industry. However, it is rather incomplete to the cognition of the sieving process for us due to the daedal separation process involving interactions of thousands of partic...Screening was widely used in many sectors of industry. However, it is rather incomplete to the cognition of the sieving process for us due to the daedal separation process involving interactions of thousands of particulates. To address this problem, two dimensional numerical simulation of batch sieving process was performed by adopting advanced discrete element method (DEM), which is one of the highly nonlinear digitized dynamic simulative methods and can be used to reveal the quantitative change from particle dimension level. DEM simulation results show that the jam phenomena of sieve-plate apertures of the "blinding particles" in the screen feed can be demonstrated vividly and results also reveal that the velocity of particle moving on the screen plate will vary along with the screen length. This conclusion will be helpful to the design and operation of screen.展开更多
This paper presents series studies on the toppling mechanism by centrifuge tests and numerical simulations. Two different discrete element methods, i.e., the continuum-based discrete element method(CDEM) and the disco...This paper presents series studies on the toppling mechanism by centrifuge tests and numerical simulations. Two different discrete element methods, i.e., the continuum-based discrete element method(CDEM) and the discontinuous deformation analysis(DDA), are adopted. The modeling results show that both the methods can accurately capture the failure modes of the centrifuge tests, including three distinct zones and two failure surfaces. Comparisons are made between the physical test and numerical simulation results. The critical inclination angle of the tilting table where the slope models are fixed on can be moderately predicted by the two methods, with different degrees of precision. The error between the test results and the simulated results is within 1% for the slope models without rock-bridges by both CDEM and DDA. However, it is amplified for the staggered-joint models that simulate the rock-bridges. With DDA, the average error is about 5%, and the maximum error is up to 17%. While with CDEM, the errors for the aligned-joint models are ranged from 1% to 6%, and it is from 10% to 29% for the staggered-joint models. The two numerical methods show the capability in simulating toppling failure of blocky rock mass with and without rock-bridges. The model with rock-bridges which provides a certain bending resistance is more stable than the one without any rock-bridge. In addition, the two failure surfaces were observed, which is different from the common understanding that only one failure surface appears.展开更多
Effects of agglomerates on the densification behavior and microstructural evolution during solid-state sintering of a cube of copper particles have been studied with discrete element method (DEM).It is found that the ...Effects of agglomerates on the densification behavior and microstructural evolution during solid-state sintering of a cube of copper particles have been studied with discrete element method (DEM).It is found that the densification of the sintering system decreases as the volume fraction of agglomerates increases.At a given volume fraction of agglomerates,the smaller the size of agglomerates,the poorer the densification and more inhomogeneous the compact is.The morphology and distribution of agglomerates have negligible effects on the densification,especially for the case with a low volume fraction of agglomerates.Agglomerates with a smaller average coordination number would have more restriction on the densification of sintering bodies.To our best knowledge,it is the first time to study the effect of agglomerates on sintering behavior using DEM.This study should be useful for further investigations of the effect of various inhomogeneities of microstructure on the complex sintering process by DEM.展开更多
Magnetophoresis is one of the most important separation methods in biological and chemical engineering. In this paper,a novel impact parameter on separation efficiency,i.e.,the angle between the vectors of magnetic fo...Magnetophoresis is one of the most important separation methods in biological and chemical engineering. In this paper,a novel impact parameter on separation efficiency,i.e.,the angle between the vectors of magnetic force and fluid velocity,was derived from the basic equation describing the motion of magnetic beads in microchannels. It is proposed that one of the most important approaches for separation efficiency enhancement is to improve the coordination of magnetic force field and fluid flow field. A T-shaped microchannel magnetophoretic separator was designed based on the angle. And then a two-dimensional dynamic model of magnetic beads moving in microchannels was established to study the separation efficiency of T-shaped microseparator by combined use of finite element method and Runge-Kutta method. The results show that the capture effi-ciency of T-shaped microseparator is much higher than that of the straight microseparator at the same conditions. For small magnetic beads at high fluid velocities,the designed T-shaped microseparator could still keep high separation efficiency whereas the conventional straight microseparator fails to separate the magnetic beads. Further analysis shows that the mechanism of separation efficiency enhancement lies in the synergy of magnetic force field and flow field,which directly leads to large deflected velocity of the magnetic beads from the main stream,and thus increasing the separation efficiency. It is anticipated that the results in this paper are theoretically helpful for the optimum design of highly efficient magnetophoretic separators.展开更多
Discontinuous deformation analysis (DDA) method is a newly developed discrete element method which employs the implicit time-integration scheme to solve the governing equations and the open-close iteration (OCI) m...Discontinuous deformation analysis (DDA) method is a newly developed discrete element method which employs the implicit time-integration scheme to solve the governing equations and the open-close iteration (OCI) method to deal with contact prob- lem, its computational efficiency is relatively low. However, spherical element based discontinuous deformation analysis (SDDA), which uses very simple contact type like point-to-point contact, has higher calculation speed. In the framework of SDDA, this paper presents a very simple contact calculation approach by removing the OCI scheme and by adopting the maximal displacement increment (MDI). Through some verification examples, it is proved that the proposed method is correct and effective, and a higher computational efficiency is obtained.展开更多
Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently.The single emitter single nanoshell configuration is studied systematically by employing the finite-d...Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently.The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method.The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect.The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled.In contrast,for the case of the emitter placed inside the nanoshell,it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations.Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label.The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors,and the nanocomposite configuration has great potential for optical detecting,imaging and sensing in biological applications.展开更多
A dual-core photonic crystal fiber(PCF)polarization splitter based on lead silicate glass is proposed.The characteristics of the polarization splitter are analyzed using full-vector finite element method.Compared with...A dual-core photonic crystal fiber(PCF)polarization splitter based on lead silicate glass is proposed.The characteristics of the polarization splitter are analyzed using full-vector finite element method.Compared with the silica glass PCF polarization splitter with the same structure,it is shown that the new material polarizer can realize splitting with less coupling loss and higher extinction ratio.When the wavelength is 1 550 nm and the PCF length in the beam splitter is 688μm,the coupling loss is only 0.001 9 d B,and the extinction ratio for the input core is-64.1 d B.展开更多
基金Projects(5137424151275531)supported by the National Natural Science Foundation of ChinaProject(CX2014B059)supported by the Innovation Foundation for Postgraduate of Hunan Province,China
文摘Taking simultaneous variations in both particle volume and density into account, the radial mixing and segregation of binary granular bed in a rotating drum half loaded were investigated by a 3D discrete element method. Then, based on the competition theory of condensation and percolation, radial segregation due to differences in particle volume and/or density was analyzed. The results show that if either percolation effect induced by volume difference or condensation effect induced by density difference dominates in the active layer of moving bed, separation will occur. Controlling the volume ratio or density ratio of the two types of particles can achieve an equilibrium state between percolation and condensation, and then homogenous mixture can be obtained. When the percolation balances with the condensation, the relationship between volume ratioand density ratiopresents nearly a power function. Scaling up a rotating drum will not affect the mixing degree of the granular bed so long as the volume ratio and density ratio are predefined.
基金the National Basic Research Program of China (Grant No. 2008CB425802)
文摘Numerical analyses of earthquake effects on the deformation, stability, and load transfer of a slope covered by deposits are traditionally based on the assumption that the slope is a continuum. It would be problematic, however, to extend these approaches to the simulation of the slide, collapse and disintegration of the deposits under seismic loading. Contrary to this, a discrete element method (DEM) provides a means to consider large displacement and rotation of the non-continuum. To take the advantages of both methods of continuum and non- continuum analyses, seismic responses of a slope covered by deposits are studied by coupling a twodimensional (a-D) finite difference method and a 2-D DEM, with the bedrock being modelled by the finite difference grids and the deposits being represented by disks. A smooth transition across the boundaries of the continuous/discontinuous domains is obtained by imposing the compatibility condition and equilibrium condition along their interfaces. In the course of computation, the same time-step value is chosen for both continuous and discontinuous domains. The free-field boundaries are adopted for lateral grids of bedrock domain to eliminate the radiation damping effect. When the static equilibrium under gravity load is obtained, dynamic calculation begins under excitation of the seismic wave input from the continuum model bottom. In this way, responses to the earthquake of a slope covered by deposits are analyzed dynamically. Combined with field monitoring data, deformation and stability of the slope are discussed. The effects of the relevant parameters of spectrum characteristic, duration, andpeak acceleration of seismic waves are further investigated and explained from the simulations.
基金Project 2006HZ0002-2 supported by the Special Topic Fund of Key Science and Technology of Fujian Province
文摘The discrete element method(DEM) has been widely used to simulate microscopic interactions between particles.Screening is a deeply complicated process when considering the law of motion for the particles,themselves.In this paper,a numerical model for the study of a particle screening process using the DEM is presented.Special attention was paid to the modeling of a vibrating screen that allows particles to pass through,or to rebound,when approaching the screen surface.Inferences concerning screen length and vibrating frequency as they relate to screening efficiency were studied.The conclusions were:three-dimensional simulation of screening efficiency along the screen length follows an exponential distribution;when the sieve vibrates over a certain frequency range the screening efficiency is stable;and,higher vibration frequencies can improve the handling capacity of the screening machine.
文摘The quantitative evaluation of errors involved in a particular numerical modelling is of prime importance for the effectiveness and reliability of the method. Errors in Distinct Element Modelling are generated mainly through three resources as simplification of physical model, determination of parameters and boundary conditions. A measure of errors which represent the degree of numerical solution 'close to true value' is proposed through fuzzy probability in this paper. The main objective of this paper is to estimate the reliability of Distinct Element Method in rock engineering practice by varying the parameters and boundary conditions. The accumulation laws of standard errors induced by improper determination of parameters and boundary conditions are discussed in delails. Furthermore, numerical experiments are given to illustrate the estimation of fuzzy reliability. Example shows that fuzzy reliability falls between 75%-98% when the relative standard errors of input data is under 10 %.
基金Science Foundation of Anhui University of Technology and Science,China(No.2007YQ001)
文摘New polyimide containing calix [4] arene moieties on the polymer backbone was successfully synthesized in N- methy1 - 2 - pyrrolidone (NMP) by polycondensations of 3, 3', 4, 4'- oxydiphthalic anhydride (ODPA) with the diaminocalix[4]arene monomer using 3,3'- dimethy1- 4, 4'- The polyimide prepared is soluble in common solvents, such as NMP, DMAc, DMF and chloroform. The polyimide films obtained have excellent thermal stability and mechanical property. At the same time, the liquid membrane transport of potassium ions by the new polyimide was investigated, which testified that compared to ODPA-DADPM polyimide, the polyimide containing culix[4] arenes has the transport ability to metal ions in regard to bulky, cone-like calix [-4] arene moieties.
基金Project(41672258) supported by the National Natural Science Foundation of ChinaProject(2018045) supported by the Land and Resources Science&Technology Project of Jiangsu Province,China。
文摘The landslide disaster caused by the argillaceous interlayer not only destroys buildings,cultivated land,and roads but also seriously endangers human life and safety.This study concerns the mineral composition of selected argillaceous interlayer and their strength characteristics.To study the mineral composition of argillaceous interlayers,8 kinds of samples in the southern Jiangsu region of China were analyzed utilizing X-ray diffraction(XRD).The repeated direct shear strength tests(RDST)were carried out on the undisturbed specimens of the argillaceous interlayer.The results show that the argillaceous interlayer with high content of kaolinite shows ductile failure mode,which means that there is no obvious residual strength in the shear process.The arrangement of mineral particles on the shear surface of the specimens after different shear displacements was observed under the scanning electron microscope(SEM).It was observed that mineral particles on the shear surface showed a more directional arrangement with the increase of shear displacement.Furthermore,the influence of shear direction on the argillaceous interlayer with completely oriented mineral particles was studied through numerical experiments with four shear strength mechanisms proposition proposed.The influence of the mineral arrangement on the action occasion and magnitude of dilatancy component of shear strength is clarified in the shear mechanism.
基金Supported by National Outstanding Youth Scientific Fund(50025411)Universities Doctor Point the Scientific Research Foundation Sustentation Program(20030290015)
文摘Screening was widely used in many sectors of industry. However, it is rather incomplete to the cognition of the sieving process for us due to the daedal separation process involving interactions of thousands of particulates. To address this problem, two dimensional numerical simulation of batch sieving process was performed by adopting advanced discrete element method (DEM), which is one of the highly nonlinear digitized dynamic simulative methods and can be used to reveal the quantitative change from particle dimension level. DEM simulation results show that the jam phenomena of sieve-plate apertures of the "blinding particles" in the screen feed can be demonstrated vividly and results also reveal that the velocity of particle moving on the screen plate will vary along with the screen length. This conclusion will be helpful to the design and operation of screen.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB047006)
文摘This paper presents series studies on the toppling mechanism by centrifuge tests and numerical simulations. Two different discrete element methods, i.e., the continuum-based discrete element method(CDEM) and the discontinuous deformation analysis(DDA), are adopted. The modeling results show that both the methods can accurately capture the failure modes of the centrifuge tests, including three distinct zones and two failure surfaces. Comparisons are made between the physical test and numerical simulation results. The critical inclination angle of the tilting table where the slope models are fixed on can be moderately predicted by the two methods, with different degrees of precision. The error between the test results and the simulated results is within 1% for the slope models without rock-bridges by both CDEM and DDA. However, it is amplified for the staggered-joint models that simulate the rock-bridges. With DDA, the average error is about 5%, and the maximum error is up to 17%. While with CDEM, the errors for the aligned-joint models are ranged from 1% to 6%, and it is from 10% to 29% for the staggered-joint models. The two numerical methods show the capability in simulating toppling failure of blocky rock mass with and without rock-bridges. The model with rock-bridges which provides a certain bending resistance is more stable than the one without any rock-bridge. In addition, the two failure surfaces were observed, which is different from the common understanding that only one failure surface appears.
基金supported by the National Natural Science Foundation of China (Grant Nos.10972220,11021262 and 11125211)the National Basic Research Program of China (Grant No.2012CB937500)
文摘Effects of agglomerates on the densification behavior and microstructural evolution during solid-state sintering of a cube of copper particles have been studied with discrete element method (DEM).It is found that the densification of the sintering system decreases as the volume fraction of agglomerates increases.At a given volume fraction of agglomerates,the smaller the size of agglomerates,the poorer the densification and more inhomogeneous the compact is.The morphology and distribution of agglomerates have negligible effects on the densification,especially for the case with a low volume fraction of agglomerates.Agglomerates with a smaller average coordination number would have more restriction on the densification of sintering bodies.To our best knowledge,it is the first time to study the effect of agglomerates on sintering behavior using DEM.This study should be useful for further investigations of the effect of various inhomogeneities of microstructure on the complex sintering process by DEM.
基金supported by the National Natural Science Foundation of China (Grant No.50925624)the National Basic Research Program of China ("973" Project) (Grant No.2012CB720404)the Science and Technology Commission of Shanghai Municipality (Grant No.11XD1403100)
文摘Magnetophoresis is one of the most important separation methods in biological and chemical engineering. In this paper,a novel impact parameter on separation efficiency,i.e.,the angle between the vectors of magnetic force and fluid velocity,was derived from the basic equation describing the motion of magnetic beads in microchannels. It is proposed that one of the most important approaches for separation efficiency enhancement is to improve the coordination of magnetic force field and fluid flow field. A T-shaped microchannel magnetophoretic separator was designed based on the angle. And then a two-dimensional dynamic model of magnetic beads moving in microchannels was established to study the separation efficiency of T-shaped microseparator by combined use of finite element method and Runge-Kutta method. The results show that the capture effi-ciency of T-shaped microseparator is much higher than that of the straight microseparator at the same conditions. For small magnetic beads at high fluid velocities,the designed T-shaped microseparator could still keep high separation efficiency whereas the conventional straight microseparator fails to separate the magnetic beads. Further analysis shows that the mechanism of separation efficiency enhancement lies in the synergy of magnetic force field and flow field,which directly leads to large deflected velocity of the magnetic beads from the main stream,and thus increasing the separation efficiency. It is anticipated that the results in this paper are theoretically helpful for the optimum design of highly efficient magnetophoretic separators.
基金supported by the National Basic Research Program of China("973" Project)(Grant Nos.2014CB046904&2014CB047101)the National Natural Science Foundation of China(Grant Nos.51479191&51509242)
文摘Discontinuous deformation analysis (DDA) method is a newly developed discrete element method which employs the implicit time-integration scheme to solve the governing equations and the open-close iteration (OCI) method to deal with contact prob- lem, its computational efficiency is relatively low. However, spherical element based discontinuous deformation analysis (SDDA), which uses very simple contact type like point-to-point contact, has higher calculation speed. In the framework of SDDA, this paper presents a very simple contact calculation approach by removing the OCI scheme and by adopting the maximal displacement increment (MDI). Through some verification examples, it is proved that the proposed method is correct and effective, and a higher computational efficiency is obtained.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB328703)the National Natural Science Foundation of China(Grant Nos.11374026,91221304 and 11121091)
文摘Single gold nanoshell with mutilpolar plasmon resonances is proposed to enhance two-photon fluorescence efficiently.The single emitter single nanoshell configuration is studied systematically by employing the finite-difference time-domain method.The emitter located inside or outside the nanoshell at various positions leads to a significantly different enhancement effect.The fluorescent emitter placed outside the nanoshell can achieve large fluorescence intensity given that both the position and orientation of the emission dipole are optimally controlled.In contrast,for the case of the emitter placed inside the nanoshell,it can experience substantial two-photon fluorescence enhancement without strict requirements upon the position and dipole orientations.Metallic nanoshell encapsulating many fluorescent emitters should be a promising nanocomposite configuration for bright two-photon fluorescence label.The results provide a comprehensive understanding about the plasmonic-enhanced two-photon fluorescence behaviors,and the nanocomposite configuration has great potential for optical detecting,imaging and sensing in biological applications.
基金supported by the National Natural Science Foundation of China(No.11004152)
文摘A dual-core photonic crystal fiber(PCF)polarization splitter based on lead silicate glass is proposed.The characteristics of the polarization splitter are analyzed using full-vector finite element method.Compared with the silica glass PCF polarization splitter with the same structure,it is shown that the new material polarizer can realize splitting with less coupling loss and higher extinction ratio.When the wavelength is 1 550 nm and the PCF length in the beam splitter is 688μm,the coupling loss is only 0.001 9 d B,and the extinction ratio for the input core is-64.1 d B.