A novel phenomenon that the localized coherent structures of a (2+1)-dimensional physical model possess fractal behaviors is revealed. To clarify the interesting phenomenon, we take the (2+1)-dimensional Boiti-Leon Pe...A novel phenomenon that the localized coherent structures of a (2+1)-dimensional physical model possess fractal behaviors is revealed. To clarify the interesting phenomenon, we take the (2+1)-dimensional Boiti-Leon Pempinelli system as a concrete example. Starting from an extended homogeneous balance approach, a general solution of the system is derived. From which some special localized excitations with fractal behaviors are obtained by introducing some types of lower-dimensional fractal patterns.展开更多
The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended e...The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended eigenfunction system in the sense of Cauchy's principal value is proved. Then the incompleteness of the extended eigenfunction system in general sense is proved. So the completeness of the symplectic orthogonal system of the infinite-dimensional Hamiltonian operator of this kind of plate bending equation is proved. At last the general solution of the infinite dimensional Hamiltonian system is equivalent to the solution function system series expansion, so it gives to theoretical basis of the methods of separation of variables based on Hamiltonian system for this kind of equations.展开更多
With the help of an improved mapping approach and a linear-variable-separation approach, a new family of exact solutions with arbitrary functions of the (2+1)-dimensional Nizhnik-Novikov-Veselov system (NNV) is d...With the help of an improved mapping approach and a linear-variable-separation approach, a new family of exact solutions with arbitrary functions of the (2+1)-dimensional Nizhnik-Novikov-Veselov system (NNV) is derived. Based on the derived solutions and using some multi-valued functions, we find a few new folded solitary wave excitations for the (2+1)-dimensional NNV system.展开更多
Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+ 1)-dimensional Maccari system. By introducing Jacobi elliptic functions dn and nd ...Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+ 1)-dimensional Maccari system. By introducing Jacobi elliptic functions dn and nd in the seed solution, two types of doubly periodic propagating wave patterns are derived. We invest/gate the wave patterns evolution along with the modulus k increasing, many important and interesting properties are revealed.展开更多
Using an extended projective method, a new type of variable separation solution with two arbitrary functions of the (2+1)-dimensional generalized Broer-Kaup system (GBK) is derived. Based on the derived variable separ...Using an extended projective method, a new type of variable separation solution with two arbitrary functions of the (2+1)-dimensional generalized Broer-Kaup system (GBK) is derived. Based on the derived variable separation solution, some special localized coherent soliton excitations with or without elastic behaviors such as dromions, peakons,and foldons etc. are revealed by selecting appropriate functions in this paper.展开更多
Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Sch...Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Schinzel.By bounding the degrees,but expanding the maps and variables in Davenport's Problem,Galois stratification enhanced the separated variable theme,solving an Ax and Kochen problem from their Artin Conjecture work.Denef and Loeser applied this to add Chow motive coefficients to previously introduced zeta functions on a diophantine statement.By restricting the variables,but leaving the degrees unbounded,we found the striking distinction between Davenport's problem over Q,solved by applying the Branch Cycle Lemma,and its generalization over any number field,solved by using the simple group classification.This encouraged Thompson to formulate the genus 0 problem on rational function monodromy groups.Guralnick and Thompson led its solution in stages.We look at two developments since the solution of Davenport's problem.Stemming from MacCluer's 1967 thesis,identifying a general class of problems,including Davenport's,as monodromy precise.R(iemann)E(xistence)T(heorem)'s role as a converse to problems generalizing Davenport's,and Schinzel's (on reducibility).We use these to consider:Going beyond the simple group classification to handle imprimitive groups,and what is the role of covers and correspondences in going from algebraic equations to zeta functions with Chow motive coefficients.展开更多
文摘A novel phenomenon that the localized coherent structures of a (2+1)-dimensional physical model possess fractal behaviors is revealed. To clarify the interesting phenomenon, we take the (2+1)-dimensional Boiti-Leon Pempinelli system as a concrete example. Starting from an extended homogeneous balance approach, a general solution of the system is derived. From which some special localized excitations with fractal behaviors are obtained by introducing some types of lower-dimensional fractal patterns.
基金Supported by the National Natural Science Foundation of China under Grant No. 10962004the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20070126002
文摘The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended eigenfunction system in the sense of Cauchy's principal value is proved. Then the incompleteness of the extended eigenfunction system in general sense is proved. So the completeness of the symplectic orthogonal system of the infinite-dimensional Hamiltonian operator of this kind of plate bending equation is proved. At last the general solution of the infinite dimensional Hamiltonian system is equivalent to the solution function system series expansion, so it gives to theoretical basis of the methods of separation of variables based on Hamiltonian system for this kind of equations.
基金supported by the Natural Science Foundation of Zhejiang Province under Grant No.Y604106the Scientific Research Foundation of Zhejiang Provincial Education Department under Grant No.20070568the Natural Science Foundation of Zhejiang Lishui University under Grant No.KZ08001
文摘With the help of an improved mapping approach and a linear-variable-separation approach, a new family of exact solutions with arbitrary functions of the (2+1)-dimensional Nizhnik-Novikov-Veselov system (NNV) is derived. Based on the derived solutions and using some multi-valued functions, we find a few new folded solitary wave excitations for the (2+1)-dimensional NNV system.
基金The project supported by the National Natural Science Foundation of China under Grant No. 10272071, the Natural Science Foundation of Zhejiang Province of China under Grant No. Y504111, and the Science Research Foundation of Huzhou University
文摘Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+ 1)-dimensional Maccari system. By introducing Jacobi elliptic functions dn and nd in the seed solution, two types of doubly periodic propagating wave patterns are derived. We invest/gate the wave patterns evolution along with the modulus k increasing, many important and interesting properties are revealed.
文摘Using an extended projective method, a new type of variable separation solution with two arbitrary functions of the (2+1)-dimensional generalized Broer-Kaup system (GBK) is derived. Based on the derived variable separation solution, some special localized coherent soliton excitations with or without elastic behaviors such as dromions, peakons,and foldons etc. are revealed by selecting appropriate functions in this paper.
文摘Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Schinzel.By bounding the degrees,but expanding the maps and variables in Davenport's Problem,Galois stratification enhanced the separated variable theme,solving an Ax and Kochen problem from their Artin Conjecture work.Denef and Loeser applied this to add Chow motive coefficients to previously introduced zeta functions on a diophantine statement.By restricting the variables,but leaving the degrees unbounded,we found the striking distinction between Davenport's problem over Q,solved by applying the Branch Cycle Lemma,and its generalization over any number field,solved by using the simple group classification.This encouraged Thompson to formulate the genus 0 problem on rational function monodromy groups.Guralnick and Thompson led its solution in stages.We look at two developments since the solution of Davenport's problem.Stemming from MacCluer's 1967 thesis,identifying a general class of problems,including Davenport's,as monodromy precise.R(iemann)E(xistence)T(heorem)'s role as a converse to problems generalizing Davenport's,and Schinzel's (on reducibility).We use these to consider:Going beyond the simple group classification to handle imprimitive groups,and what is the role of covers and correspondences in going from algebraic equations to zeta functions with Chow motive coefficients.