By means of an improved mapping method and a variable separation method, a series of variable separation solutions including solitary wave solutions, periodic wave solutions and rational function solutions) to the (...By means of an improved mapping method and a variable separation method, a series of variable separation solutions including solitary wave solutions, periodic wave solutions and rational function solutions) to the (2+1)-dimensional breaking soliton system is derived. Based on the derived solitary wave excitation, we obtain some special annihilation solitons and chaotic solitons in this short note.展开更多
In this letter, using a Baecklund transformation and the new variableseparation approach, we find a new general solution of the (N+1)-dimensional Burgers system. Theform of the universal formula obtained from many (2+...In this letter, using a Baecklund transformation and the new variableseparation approach, we find a new general solution of the (N+1)-dimensional Burgers system. Theform of the universal formula obtained from many (2+1)-dimensional system is extended.展开更多
Starting from a Backlund transformation and taking a special ansatz for the function f, we can obtain a much more generalexpression of solution that includes some variable separated functions for the higher-order Broe...Starting from a Backlund transformation and taking a special ansatz for the function f, we can obtain a much more generalexpression of solution that includes some variable separated functions for the higher-order Broer-Kaup system. From this expression, we investigate the interactions of localized coherent structures such as the multi-solitonic excitations and find the novel phenomenon that their interactions have non-elastic behavior because the fission/fusion may occur after the interaction of each localized coherent structure.展开更多
By means of a special Painleve—Baecklund transformation and a multilinearvariable separation approach, an exact solution with arbitrary functions of the (2+1)-dimensionalBoiti-Leon-Pempinelli system (BLP) is derived....By means of a special Painleve—Baecklund transformation and a multilinearvariable separation approach, an exact solution with arbitrary functions of the (2+1)-dimensionalBoiti-Leon-Pempinelli system (BLP) is derived. Based on the derived variable separation solution, weobtain some special soliton fission and fusion solutions for the higher dimensional BLP system.展开更多
The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended e...The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended eigenfunction system in the sense of Cauchy's principal value is proved. Then the incompleteness of the extended eigenfunction system in general sense is proved. So the completeness of the symplectic orthogonal system of the infinite-dimensional Hamiltonian operator of this kind of plate bending equation is proved. At last the general solution of the infinite dimensional Hamiltonian system is equivalent to the solution function system series expansion, so it gives to theoretical basis of the methods of separation of variables based on Hamiltonian system for this kind of equations.展开更多
Using a special Painleve-Baecklund transformation as well as the extended mapping approach and the linear superposition theorem, we obtain new families of variable separation solutions to the (2+1)-dimensional gene...Using a special Painleve-Baecklund transformation as well as the extended mapping approach and the linear superposition theorem, we obtain new families of variable separation solutions to the (2+1)-dimensional generalized Broer-Kaup (GBK) system. Based on the derived exact solution, we reveal some novel evolutional behaviors of localized excitations, i.e. fission and fusion phenomena in the (2+1)-dimensional GBK system.展开更多
The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-le...The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-less system.Namely, by using a Backlund transformation and the MLVSA, we find a new general solution and define a new "universal formula". Then, some new (1+1)-dimensional coherent structures of this universal formula can be found by selecting corresponding functions appropriately. Specially, in some conditions, bell soliton and kink soliton can transform each other, which are illustrated graphically.展开更多
With an extended mapping approach and a linear variable separation method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) ...With an extended mapping approach and a linear variable separation method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) with arbitrary functions for (3+1)-dimensionai Burgers system is derived. Based on the derived excitations, we obtain some novel localized coherent structures and study the interactions between solitons.展开更多
The linear variable separation approach is successfully extended to(1+1)-dimensional Korteweg-de Vries (KdV) type models related to Schrodinger system. Somesignificant types of solitons such as compaction, peakon, and...The linear variable separation approach is successfully extended to(1+1)-dimensional Korteweg-de Vries (KdV) type models related to Schrodinger system. Somesignificant types of solitons such as compaction, peakon, and loop solutions with periodic behaviorare simultaneously derived from the (l+l)-dimensional soliton system by entrancing appropriatepiecewise smooth functions and multivalued functions.展开更多
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transfor...With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.展开更多
By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized co...By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.展开更多
The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burge...The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burgers system, (2+1)-dimensional breaking soliton system, and (2+1)-dimensional Maccari system. Some new exact solutions are obtained and the universal formula obtained from many (2+1)-dimensional systems is extended or modified.展开更多
New exact quasi-periodic and non-periodic solutions for the (2+ 1)-dimensional nonlinear systems are studied by means of the multi-linear variable separation approach (MLVSA) and the Jacobi elliptic functions wit...New exact quasi-periodic and non-periodic solutions for the (2+ 1)-dimensional nonlinear systems are studied by means of the multi-linear variable separation approach (MLVSA) and the Jacobi elliptic functions with the space-time-dependent modulus. Though the result is valid for all the MLVSA solvable models, it is explicitly shown for the long-wave and short-wave interaction model.展开更多
In this letter, starting from a B?cklund transformation, a general solution of a (2+1)-dimensional integrable system is obtained by using the new variable separation approach.
基金The project supported by the Natural Science Foundation of Zhejiang Province under Grant No. Y604106, the Foundation of New Century 151 Talent Engineering of Zhejiang Province, and the Natural Science Foundation of Zhejiang Lishui University under Grant No. KZ05010 Acknowledgments The authors would like to thank professor Chun-Long Zheng for his fruitful and helpful suggestions.
文摘By means of an improved mapping method and a variable separation method, a series of variable separation solutions including solitary wave solutions, periodic wave solutions and rational function solutions) to the (2+1)-dimensional breaking soliton system is derived. Based on the derived solitary wave excitation, we obtain some special annihilation solitons and chaotic solitons in this short note.
文摘In this letter, using a Baecklund transformation and the new variableseparation approach, we find a new general solution of the (N+1)-dimensional Burgers system. Theform of the universal formula obtained from many (2+1)-dimensional system is extended.
文摘Starting from a Backlund transformation and taking a special ansatz for the function f, we can obtain a much more generalexpression of solution that includes some variable separated functions for the higher-order Broer-Kaup system. From this expression, we investigate the interactions of localized coherent structures such as the multi-solitonic excitations and find the novel phenomenon that their interactions have non-elastic behavior because the fission/fusion may occur after the interaction of each localized coherent structure.
基金国家自然科学基金,the Scientific Research Fund of Educational Department of Zhejiang Province of China under,浙江省自然科学基金
文摘By means of a special Painleve—Baecklund transformation and a multilinearvariable separation approach, an exact solution with arbitrary functions of the (2+1)-dimensionalBoiti-Leon-Pempinelli system (BLP) is derived. Based on the derived variable separation solution, weobtain some special soliton fission and fusion solutions for the higher dimensional BLP system.
基金Supported by the National Natural Science Foundation of China under Grant No. 10962004the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20070126002
文摘The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended eigenfunction system in the sense of Cauchy's principal value is proved. Then the incompleteness of the extended eigenfunction system in general sense is proved. So the completeness of the symplectic orthogonal system of the infinite-dimensional Hamiltonian operator of this kind of plate bending equation is proved. At last the general solution of the infinite dimensional Hamiltonian system is equivalent to the solution function system series expansion, so it gives to theoretical basis of the methods of separation of variables based on Hamiltonian system for this kind of equations.
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604106, the Foundation of "New Century 151 Talent Engineering" of Zhejiang Province, and the Key Academic Discipline Foundation of Zhejiang Province .The authors would like to thank Profs. J.F. Zhang, L.Q. Chen, and J.P. Fang for their fruitful discussions.
文摘Using a special Painleve-Baecklund transformation as well as the extended mapping approach and the linear superposition theorem, we obtain new families of variable separation solutions to the (2+1)-dimensional generalized Broer-Kaup (GBK) system. Based on the derived exact solution, we reveal some novel evolutional behaviors of localized excitations, i.e. fission and fusion phenomena in the (2+1)-dimensional GBK system.
文摘The multi-linear variable separation approach (MLVSA ) is very useful to solve (2+ 1)-dimensional integrable systems. In this letter, we extend this method to solve a (1+1)-dimensional coupled integrable dispersion-less system.Namely, by using a Backlund transformation and the MLVSA, we find a new general solution and define a new "universal formula". Then, some new (1+1)-dimensional coherent structures of this universal formula can be found by selecting corresponding functions appropriately. Specially, in some conditions, bell soliton and kink soliton can transform each other, which are illustrated graphically.
基金The project supported by the Natural Science Foundation of Zhejiang Province under Grant Nos.Y606128 and Y604106the Natural Science Foundation of Zhejiang Lishui University under Grant Nos.FC06001 and QN06009
文摘With an extended mapping approach and a linear variable separation method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) with arbitrary functions for (3+1)-dimensionai Burgers system is derived. Based on the derived excitations, we obtain some novel localized coherent structures and study the interactions between solitons.
基金The project supported by National Natural Science Foundation of China under Grant No. 10172056, and the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604106 and the Natural Science Foundation of Zhejiang Lishui University unde
文摘The linear variable separation approach is successfully extended to(1+1)-dimensional Korteweg-de Vries (KdV) type models related to Schrodinger system. Somesignificant types of solitons such as compaction, peakon, and loop solutions with periodic behaviorare simultaneously derived from the (l+l)-dimensional soliton system by entrancing appropriatepiecewise smooth functions and multivalued functions.
基金supported by the Scientific Research Foundation of Beijing Information Science and Technology UniversityScientific Creative Platform Foundation of Beijing Municipal Commission of Education
文摘With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.
基金The project supported by National Natural Science Foundation of China under Grant No.10172056+2 种基金the Natural Science Foundation of Zhengjiang Provincethe Foundation of Zhengjiang Lishui College under Grant Nos.KZ03009 and KZ03005
文摘By means of the standard truncated Painlevé expansion and a variable separation approach, a general variable separation solution of the generalized Burgers system is derived. In addition to the usual localized coherent soliton excitations like dromions, lumps, rings, breathers, instantons, oscillating soliton excitations, peakons, foldons, and previously revealed chaotic and fractal localized solutions, some new types of excitations — compacton and Jacobi periodic wave solutions are obtained by introducing appropriate lower dimensional piecewise smooth functions and Jacobi elliptic functions.
文摘The multi-linear variable separation approach method is very useful to solve (2+1)-dimensional integrable systems. In this letter, we extend this method to solve (1+1)-dimensional Boiti system, (2+1)-dimensional Burgers system, (2+1)-dimensional breaking soliton system, and (2+1)-dimensional Maccari system. Some new exact solutions are obtained and the universal formula obtained from many (2+1)-dimensional systems is extended or modified.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90203001 and 10475055 Acknowledgment The authors are indebt to the discussions with Dr H.C. Hu
文摘New exact quasi-periodic and non-periodic solutions for the (2+ 1)-dimensional nonlinear systems are studied by means of the multi-linear variable separation approach (MLVSA) and the Jacobi elliptic functions with the space-time-dependent modulus. Though the result is valid for all the MLVSA solvable models, it is explicitly shown for the long-wave and short-wave interaction model.
文摘In this letter, starting from a B?cklund transformation, a general solution of a (2+1)-dimensional integrable system is obtained by using the new variable separation approach.