期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
关于sober空间与T_0、T_1、T_2空间的蕴含问题
1
作者 吴耀强 《宿州教育学院学报》 2004年第1期116-117,共2页
本文利用了拓扑空间的分离性定理,逐一揭示了sober空间与它们之间的蕴含关系。
关键词 sober空间 分离性定理 蕴含
下载PDF
Application of the Separating Theorem
2
作者 王治国 《Chinese Quarterly Journal of Mathematics》 CSCD 1999年第3期103-104, ,共2页
This thesis discusses the theory of nonlinear programming (NLP) including the maths solution to a type of inequality of convex function by utilizing the separating Theorem.
关键词 separating Theorem APPLICATION
下载PDF
一般关系诱导的模糊拓扑和模糊拓扑约简 被引量:1
3
作者 赵晓霞 冯艳宾 《模糊系统与数学》 北大核心 2021年第3期8-17,共10页
本论文主要研究一般模糊关系诱导的模糊拓扑以及模糊拓扑的性质。首先,我们给出一般模糊关系诱导的模糊拓扑τR的定义,并讨论模糊拓扑的基本性质,然后证明τR和τt(R∪I)是两个相同的拓扑。第二,得到τR的内部算子和闭包算子的具体表达... 本论文主要研究一般模糊关系诱导的模糊拓扑以及模糊拓扑的性质。首先,我们给出一般模糊关系诱导的模糊拓扑τR的定义,并讨论模糊拓扑的基本性质,然后证明τR和τt(R∪I)是两个相同的拓扑。第二,得到τR的内部算子和闭包算子的具体表达式。此外还知道,当τ是quasi-离散拓扑时,τ上的模糊关系Rτ诱导的拓扑和τ是相同的。第三,考查模糊拓扑τR的一些拓扑性质。最后,我们还定义τR上模糊拓扑约简,给出约简的算法,并给予算法的证明。 展开更多
关键词 模糊拓扑 分离性定理 传递关系 传递闭包
原文传递
The Second Separation Theorem in Locally β-Convex Spaces and the Boundedness Theorem in Its Conjugate Cones 被引量:2
4
作者 王见勇 马玉梅 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第1期25-34,共10页
This paper deals with the locallyβ-convex analysis that generalizes the locally convex analysis. The second separation theorem in locallyβ-convex spaces, the Minkowski theorem and the Krein-Milman theorem in theβ-c... This paper deals with the locallyβ-convex analysis that generalizes the locally convex analysis. The second separation theorem in locallyβ-convex spaces, the Minkowski theorem and the Krein-Milman theorem in theβ-convex analysis are given. Moreover, it is obtained that the U F-boundedness and the U B-boundedness in its conjugate cone are equivalent if and only if X is subcomplete. 展开更多
关键词 locally β-convex space β-subseminorm β-extreme point(set) β-Minkowski functional conjugate (topological) cone subcomplete U F - (U B- )boundedness.
下载PDF
Recent progress in random metric theory and its applications to conditional risk measures 被引量:18
5
作者 GUO TieXin 《Science China Mathematics》 SCIE 2011年第4期633-660,共28页
The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introductio... The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introduction,which gives a brief introduction to random metric theory,risk measures and conditional risk measures.Section 2 gives the central framework in random metric theory,topological structures,important examples,the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals.Section 3 gives several important representation theorems for random conjugate spaces.Section 4 gives characterizations for a complete random normed module to be random reflexive.Section 5 gives hyperplane separation theorems currently available in random locally convex modules.Section 6 gives the theory of random duality with respect to the locally L0-convex topology and in particular a characterization for a locally L0-convex module to be L0-pre-barreled.Section 7 gives some basic results on L0-convex analysis together with some applications to conditional risk measures.Finally,Section 8 is devoted to extensions of conditional convex risk measures,which shows that every representable L∞-type of conditional convex risk measure and every continuous Lp-type of convex conditional risk measure(1 ≤ p < +∞) can be extended to an L∞F(E)-type of σ,λ(L∞F(E),L1F(E))-lower semicontinuous conditional convex risk measure and an LpF(E)-type of T,λ-continuous conditional convex risk measure(1 ≤ p < +∞),respectively. 展开更多
关键词 random normed module random inner product module random locally convex module random conjugate space L0-convex analysis conditional risk measures
原文传递
DISCRETE-TIME EPIDEMIC DYNAMICS WITH AWARENESS IN RANDOM NETWORKS 被引量:2
6
作者 YILUN SHANG 《International Journal of Biomathematics》 2013年第2期147-153,共7页
Human behavioral responses fundamentally influence the spread of infectious disease. In this paper, we study a discrete-time SIS epidemic process in random networks. Three forms of individual awareness, namely, local ... Human behavioral responses fundamentally influence the spread of infectious disease. In this paper, we study a discrete-time SIS epidemic process in random networks. Three forms of individual awareness, namely, local awareness, global awareness and contact awareness, are considered. The effect of awareness is to reduce the risk of infection. [3ased on the stability theory of matrix difference equation, we derive analytically the epidemic threshold. It is found that both local and contact awareness can raise the epidemic threshold, while the global awareness only decreases the epidemic prevalence. Our results are in line with a recent result using differential equation-based methods. 展开更多
关键词 Epidemic model complex network behavioral response difference equation stability.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部