The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the p...The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the posture characteristics of the car-body based on the previous full-scale test results.And then the aerodynamic performance under different vibration cases(different car-body roll angles)is studied with an improved delayed detached eddy simulation(IDDES).The results revealed that car-body rolling had a significant impact on the aerodynamic behavior of bogies,which significantly increased the lateral force and yaw moment of a bogie and further may have aggravated the operational instability of the train.The unbalanced distribution of the longitudinal pressure on both sides of the bogie caused by the car-body rolling motion was the primary cause for the bogie yaw moment increase.The tail vortex of the train was also affected by the car-body rolling,resulting in vertical jitter.展开更多
With the development of computational power and numerical algorithms,computational fluid dynamics(CFD) has become an important strategy for the design of aircraft,which significantly reduces the reliance on wind-tunne...With the development of computational power and numerical algorithms,computational fluid dynamics(CFD) has become an important strategy for the design of aircraft,which significantly reduces the reliance on wind-tunnel and flight tests.In this paper,we conducted a numerical investigation on the flow past a full commercial aircraft at Mach number 0.2 and 14 degrees angle of attack by means of Reynolds-averaged Navier-Stokes(RANS),detached-eddy simulation(DES) and our newly developed constrained large-eddy simulation(CLES).The objective of this paper is to study the capability of these models in simulating turbulent flows.To our knowledge,this is the first large-eddy simulation method for full commercial aircraft simulation.The results show that the CLES can predict the mean statistical quantities well,qualitatively consistent with traditional methods,and can capture more small-scale structures near the surface of the aircraft with massive separations.Our study demonstrates that CLES is a promising alternative for simulating real engineering turbulent flows.展开更多
基金Project(BX2021379)supported by the China National Postdoctoral Program for Innovative Talents。
文摘The interaction between the car-body vibration and aerodynamic performance of the train becomes more prominent motivated by the vehicle’s light-weighting design.To address this topic,this study firstly analyzes the posture characteristics of the car-body based on the previous full-scale test results.And then the aerodynamic performance under different vibration cases(different car-body roll angles)is studied with an improved delayed detached eddy simulation(IDDES).The results revealed that car-body rolling had a significant impact on the aerodynamic behavior of bogies,which significantly increased the lateral force and yaw moment of a bogie and further may have aggravated the operational instability of the train.The unbalanced distribution of the longitudinal pressure on both sides of the bogie caused by the car-body rolling motion was the primary cause for the bogie yaw moment increase.The tail vortex of the train was also affected by the car-body rolling,resulting in vertical jitter.
基金supported by the National Natural Science Foundation of China(Grant Nos.10921202 and 91130001)the National Basic Research Program of China(Grant No. 2009CB724101)
文摘With the development of computational power and numerical algorithms,computational fluid dynamics(CFD) has become an important strategy for the design of aircraft,which significantly reduces the reliance on wind-tunnel and flight tests.In this paper,we conducted a numerical investigation on the flow past a full commercial aircraft at Mach number 0.2 and 14 degrees angle of attack by means of Reynolds-averaged Navier-Stokes(RANS),detached-eddy simulation(DES) and our newly developed constrained large-eddy simulation(CLES).The objective of this paper is to study the capability of these models in simulating turbulent flows.To our knowledge,this is the first large-eddy simulation method for full commercial aircraft simulation.The results show that the CLES can predict the mean statistical quantities well,qualitatively consistent with traditional methods,and can capture more small-scale structures near the surface of the aircraft with massive separations.Our study demonstrates that CLES is a promising alternative for simulating real engineering turbulent flows.