Ionization is the fundamental process in interaction of atoms/molecules with femtosecond strong laser fields. Comparing to atoms, molecules exhibit peculiar behaviors in strong-field ionization because of their divers...Ionization is the fundamental process in interaction of atoms/molecules with femtosecond strong laser fields. Comparing to atoms, molecules exhibit peculiar behaviors in strong-field ionization because of their diverse geometric structures, molecular electronic orbitals as well as extra nuclear degrees of freedom. In this study, we investigate strong field single and double ionization of carbon monoxide (CO) and carbon dioxide (CO2) in linearly polarized 50-fs, 800-nm laser fields with peak intensity in the range of 2×10 13 W/cm2 to 2×10 14 W/cm2 using time-of-flight mass spectrometer. By comparing the ionization yields with that of the companion atom krypton (Kr), which has similar ionization potential to the molecules, we investigate the effect of molecular electronic orbitals on the strong-field ionization. The results show that comparing to Kr, no significant suppression is observed in single ionization of both molecules and in non-sequential double ionization (NSDI) of CO, while the NSDI probability of CO2 is strongly suppressed. Based on our results and previous studies on homonuclear diatomic molecules (N2 and O2), the mechanism of different suppression effect is discussed. It is indicated that the different structure of the highest occupied molecular orbitals of CO and CO2 leads to distinct behaviors in two-center interference by the electronic wave-packet and angular distributions of the ionized electrons, resulting in different suppression effect in strong-field ionization.展开更多
Constructing bismuth oxyhalide solid solutions with a single homogeneous phase have intrigued the research community;however,a deeper understanding of the intrinsic origin for improved bulk-charge separation is still ...Constructing bismuth oxyhalide solid solutions with a single homogeneous phase have intrigued the research community;however,a deeper understanding of the intrinsic origin for improved bulk-charge separation is still unclear.Herein,a series of Bi_(24)O_(31)Cl_(x)Br_(10-x) solid solutions with the same structural characteristics were synthesized by crystal structure regulation.Combining density functional theory calculation,Kelvin probe force microscopy,and zeta potential testing results,an enhanced internal electric field(IEF)intensity between[Bi_(24)O_(31)]and[X]layers was achieved by changing halogen types and ratios.This greatly facilitated bulk-charge separation and transfer efficiency,which is significant for the degradation of phenolic organic pollutants.Owing to the enhanced IEF intensity,the charge carrier density of Bi_(24)O_(31)Cl_(4)Br_(6) was 33.1 and 4.7 times stronger than that of Bi_(24)O_(31)Cl_(10) and Bi_(24)O_(31)Br_(10),respectively.Therefore,Bi24O31Cl4Br6 had an optimal photoactivity for the degradation of bisphenol A,which was 6.21 and 2.71 times higher than those of Bi_(24)O_(31)Cl_(10) and Bi_(24)O_(31)Br_(10),respectively.Thus,this study revealed the intrinsic mechanism of the solid solution strategy for photocatalytic performance enhancement with respect to an IEF.展开更多
This paper reports a microfluidic method of continuous separation of marine algae and particles by DC dielectrophoresis. The locally non-uniform electric field is generated by an insulating PDMS triangle hurdle fabric...This paper reports a microfluidic method of continuous separation of marine algae and particles by DC dielectrophoresis. The locally non-uniform electric field is generated by an insulating PDMS triangle hurdle fabricated within a PDMS microchannel. Both the particles and algae are subject to negative DEP forces at the hurdle where the gradient of local electric-field strength is the strongest. The DEP force acting on the particle or the algae depends on particles' or algae's volume, shape and dielectric properties. Thus the moving particles and algae will be repelled to different streamlines when passing the hurdle. In this way, combined with the electroosmotic flow, continuous separation of algae of two different sizes, and continuous separation of polystyrene particles and algae with similar volume but different shape were achieved. This first demonstration of DC DEP separation of polystyrene particles and algae with similar sizes illustrates the great influence of dielectric properties on particle separation and potentials for sample pretreatment.展开更多
Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic ...Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic boundary conditions and the method of separation of variables,the magnetic potential of the air-gap magnetic field is obtained.Based on the magnetization force model and Lorentz force of ferromagnetic thin-walled structures,and introducing the electromagnetic constitutive relations and boundary conditions,the calculation model of electromagnetic force of the soft ferromagnetic thin plate moving in air-gap magnetic field is established.Considering geometric nonlinearity,expressions of strain energy and kinetic energy of the elastic thin plate and the work of forces are given,respectively.The magnetic-structure coupling nonlinear vibration equations of ferromagnetic thin plate parallel moving in the air-gap magnetic field excited by armatures are obtained by using the Hamilton principle,which can be of the characterization of the system dynamics model with electro-magneto-velocity-mechanical interaction.Through numerical examples,primary resonance characteristics of the strip thin plate under the action of air-gap magnetic force are obtained.The results show that the two stable amplitude values will increase as amplitude of magnetic potential increases and thickness of air-gap decreases,and the amplitude’s multi-valued region will change due to the varieties of magnetic potential,air-gap and velocity.The model established in this paper is a theoretical reference for investigation on the multi-field coupling dynamic behaviors of structures moving in complex electromagnetic fields.展开更多
Ionospheric delay is one of the major error sources in GNSS navigation and positioning.Nowadays,the dual-frequency technique is the most widely used in ionospheric refraction correction.However,dual-frequency measurem...Ionospheric delay is one of the major error sources in GNSS navigation and positioning.Nowadays,the dual-frequency technique is the most widely used in ionospheric refraction correction.However,dual-frequency measurements can only eliminate the first-order term of ionospheric delay,while the effect of the second-order term on GNSS observations may be several centimeters.In this paper,two models,the International Reference Ionosphere (IRI) 2007 and International Geomagnetic Reference Field (IGRF) 11 are used to estimate the second-order term through the integral calculation method.Besides,the simplified single layer ionosphere model in a dipole moment approximation for the earth magnetic field is used.Since the traditional integral calculation method requires large calculation load and takes much time,it is not convenient for practical use.Additionally,although the simplified single layer ionosphere model is simple to implement,it results in larger errors.In this study,second-order term ionospheric correction formula proposed by Hoque (2007) is improved for estimating the second-order term at a global scale.Thus,it is more practicable to estimate the second-order term.More importantly,its results have a higher precision of the sub-millimeter level for a global scale in normal conditions.Compared with Hoque's original regional correction model,which calculates coefficients through polynomial fitting of elevation and latitudes,this study proposes a piece-wise look-up table and interpolation technique to modify Hoque model.Through utilizing a table file,the modified Hoque model can be conveniently implemented in an engineering software package,like as PANDA in this study.Through applying the proposed scheme for the second-order ionospheric correction into GNSS precise positioning in both PPP daily and epoch solutions,the results have shown south-shift characteristics in daily solution at a global scale and periodic change with VTEC daily variation in epoch positioning solution.展开更多
We determine the structure parameters for the asymmetric heteronuclear diatomic molecule HeH2+ at several internuclear distances with the molecular wavefunctions obtained by solving the time-independent Schr6dinger e...We determine the structure parameters for the asymmetric heteronuclear diatomic molecule HeH2+ at several internuclear distances with the molecular wavefunctions obtained by solving the time-independent Schr6dinger equation with B-spline basis. Then the angular dependence of strong-field ionization rates of HeH2+ are investigated with the molecular tunneling ionization theory. We show that the shape of several lowly excited states (i.e. 2pσ, 2pπ, 3dσ) for HeH2+ are reflected in the orientation dependent ionization rates very well, however, the angle-dependent ionization rate fails to follow the angular distribution of the asymptotic electron density for the ground state lsσ. We also show that the internuclear distance dependent ionization probabilities are in a good agreement with the more accurate result obtained from the numerical solution of the time-dependent Schr6dinger equation.展开更多
文摘Ionization is the fundamental process in interaction of atoms/molecules with femtosecond strong laser fields. Comparing to atoms, molecules exhibit peculiar behaviors in strong-field ionization because of their diverse geometric structures, molecular electronic orbitals as well as extra nuclear degrees of freedom. In this study, we investigate strong field single and double ionization of carbon monoxide (CO) and carbon dioxide (CO2) in linearly polarized 50-fs, 800-nm laser fields with peak intensity in the range of 2×10 13 W/cm2 to 2×10 14 W/cm2 using time-of-flight mass spectrometer. By comparing the ionization yields with that of the companion atom krypton (Kr), which has similar ionization potential to the molecules, we investigate the effect of molecular electronic orbitals on the strong-field ionization. The results show that comparing to Kr, no significant suppression is observed in single ionization of both molecules and in non-sequential double ionization (NSDI) of CO, while the NSDI probability of CO2 is strongly suppressed. Based on our results and previous studies on homonuclear diatomic molecules (N2 and O2), the mechanism of different suppression effect is discussed. It is indicated that the different structure of the highest occupied molecular orbitals of CO and CO2 leads to distinct behaviors in two-center interference by the electronic wave-packet and angular distributions of the ionized electrons, resulting in different suppression effect in strong-field ionization.
文摘Constructing bismuth oxyhalide solid solutions with a single homogeneous phase have intrigued the research community;however,a deeper understanding of the intrinsic origin for improved bulk-charge separation is still unclear.Herein,a series of Bi_(24)O_(31)Cl_(x)Br_(10-x) solid solutions with the same structural characteristics were synthesized by crystal structure regulation.Combining density functional theory calculation,Kelvin probe force microscopy,and zeta potential testing results,an enhanced internal electric field(IEF)intensity between[Bi_(24)O_(31)]and[X]layers was achieved by changing halogen types and ratios.This greatly facilitated bulk-charge separation and transfer efficiency,which is significant for the degradation of phenolic organic pollutants.Owing to the enhanced IEF intensity,the charge carrier density of Bi_(24)O_(31)Cl_(4)Br_(6) was 33.1 and 4.7 times stronger than that of Bi_(24)O_(31)Cl_(10) and Bi_(24)O_(31)Br_(10),respectively.Therefore,Bi24O31Cl4Br6 had an optimal photoactivity for the degradation of bisphenol A,which was 6.21 and 2.71 times higher than those of Bi_(24)O_(31)Cl_(10) and Bi_(24)O_(31)Br_(10),respectively.Thus,this study revealed the intrinsic mechanism of the solid solution strategy for photocatalytic performance enhancement with respect to an IEF.
基金support from the Fundamental Research Funds for the Central Universities (2011QN105, 2011ZD014)the Dalian Science and Technology Foundation (2011J21DW005) to SONG YongXin+2 种基金National Science & Technology Pillar Program of China in 2010 (2010BAC68B02)Liaoning Science & Technology Program (2007405010) to SUN YeQingthe Natural Sciences and Engineering Research Council of Canada through a research grant to LI DongQing
文摘This paper reports a microfluidic method of continuous separation of marine algae and particles by DC dielectrophoresis. The locally non-uniform electric field is generated by an insulating PDMS triangle hurdle fabricated within a PDMS microchannel. Both the particles and algae are subject to negative DEP forces at the hurdle where the gradient of local electric-field strength is the strongest. The DEP force acting on the particle or the algae depends on particles' or algae's volume, shape and dielectric properties. Thus the moving particles and algae will be repelled to different streamlines when passing the hurdle. In this way, combined with the electroosmotic flow, continuous separation of algae of two different sizes, and continuous separation of polystyrene particles and algae with similar volume but different shape were achieved. This first demonstration of DC DEP separation of polystyrene particles and algae with similar sizes illustrates the great influence of dielectric properties on particle separation and potentials for sample pretreatment.
基金the National Natural Science Foundation of China(Grant Nos.12172321 and 11472239)the Hebei Provincial Natural Science Foundation of China(Grant No.A2020203007).
文摘Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic boundary conditions and the method of separation of variables,the magnetic potential of the air-gap magnetic field is obtained.Based on the magnetization force model and Lorentz force of ferromagnetic thin-walled structures,and introducing the electromagnetic constitutive relations and boundary conditions,the calculation model of electromagnetic force of the soft ferromagnetic thin plate moving in air-gap magnetic field is established.Considering geometric nonlinearity,expressions of strain energy and kinetic energy of the elastic thin plate and the work of forces are given,respectively.The magnetic-structure coupling nonlinear vibration equations of ferromagnetic thin plate parallel moving in the air-gap magnetic field excited by armatures are obtained by using the Hamilton principle,which can be of the characterization of the system dynamics model with electro-magneto-velocity-mechanical interaction.Through numerical examples,primary resonance characteristics of the strip thin plate under the action of air-gap magnetic force are obtained.The results show that the two stable amplitude values will increase as amplitude of magnetic potential increases and thickness of air-gap decreases,and the amplitude’s multi-valued region will change due to the varieties of magnetic potential,air-gap and velocity.The model established in this paper is a theoretical reference for investigation on the multi-field coupling dynamic behaviors of structures moving in complex electromagnetic fields.
基金supported by the National Basic Research Project of China (Grant No.2009CB72400205)the National Natural Science Foundation of China (Grant No.40804005)the National High Technology Research and Development Program of China (Grant No.2009AA121401)
文摘Ionospheric delay is one of the major error sources in GNSS navigation and positioning.Nowadays,the dual-frequency technique is the most widely used in ionospheric refraction correction.However,dual-frequency measurements can only eliminate the first-order term of ionospheric delay,while the effect of the second-order term on GNSS observations may be several centimeters.In this paper,two models,the International Reference Ionosphere (IRI) 2007 and International Geomagnetic Reference Field (IGRF) 11 are used to estimate the second-order term through the integral calculation method.Besides,the simplified single layer ionosphere model in a dipole moment approximation for the earth magnetic field is used.Since the traditional integral calculation method requires large calculation load and takes much time,it is not convenient for practical use.Additionally,although the simplified single layer ionosphere model is simple to implement,it results in larger errors.In this study,second-order term ionospheric correction formula proposed by Hoque (2007) is improved for estimating the second-order term at a global scale.Thus,it is more practicable to estimate the second-order term.More importantly,its results have a higher precision of the sub-millimeter level for a global scale in normal conditions.Compared with Hoque's original regional correction model,which calculates coefficients through polynomial fitting of elevation and latitudes,this study proposes a piece-wise look-up table and interpolation technique to modify Hoque model.Through utilizing a table file,the modified Hoque model can be conveniently implemented in an engineering software package,like as PANDA in this study.Through applying the proposed scheme for the second-order ionospheric correction into GNSS precise positioning in both PPP daily and epoch solutions,the results have shown south-shift characteristics in daily solution at a global scale and periodic change with VTEC daily variation in epoch positioning solution.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11164025,11044007,11064013the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant Nos.20096203110001,20116203120001the Foundation of Northwest Normal University under Grant No.NWNU-KJCXGC-03-62
文摘We determine the structure parameters for the asymmetric heteronuclear diatomic molecule HeH2+ at several internuclear distances with the molecular wavefunctions obtained by solving the time-independent Schr6dinger equation with B-spline basis. Then the angular dependence of strong-field ionization rates of HeH2+ are investigated with the molecular tunneling ionization theory. We show that the shape of several lowly excited states (i.e. 2pσ, 2pπ, 3dσ) for HeH2+ are reflected in the orientation dependent ionization rates very well, however, the angle-dependent ionization rate fails to follow the angular distribution of the asymptotic electron density for the ground state lsσ. We also show that the internuclear distance dependent ionization probabilities are in a good agreement with the more accurate result obtained from the numerical solution of the time-dependent Schr6dinger equation.