Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed...Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed in a vertical radial flow adsorber used in cryogenic air separation systems may efficiently increase the treatment capacity of the air in the adsorber. However, uniformity of the flow distribution of the air inside the adsorber would be deteriorated using the height-increasing method. In order to reduce the non-uniformity of the flow distribution caused by the excessive height of adsorption bed in a vertical radial flow adsorber, a novel parallel connection method is proposed in the present work. The experimental apparatus is designed and constructed; the Computational Fluid Dynamics(CFD) technique is used to develop a CFD-based model, which is used to analyze the flow distribution, the static pressure drop and the radial velocity in the newly designed adsorber. In addition, the geometric parameters of annular flow channels and the adsorption bed thickness of the upper unit in the parallelconnected vertical radial flow adsorber are optimized, so that the upper and lower adsorption units could be penetrated by air simultaneously. Comparisons are made between the height-increasing method and the parallel connection method with the same adsorber height. It is shown that using the parallel connection method could reduce the difference between the maximum and minimum radial static pressure drop by 86.2% and improve the uniformity by 80% compared with those of using the height-increasing method. The optimal thickness ratio of the upper and lower adsorption units is obtained as 0.966, in which case the upper and lower adsorption units could be penetrated by air simultaneously, so that the adsorbents in adsorption space could be used more efficiently.展开更多
Expanded bed adsorption(EBA),a promising and practical separation technique,has been widely studied in the past two decades.The development of adsorbents for EBA process is a challenging course,with the special design...Expanded bed adsorption(EBA),a promising and practical separation technique,has been widely studied in the past two decades.The development of adsorbents for EBA process is a challenging course,with the special design and preparation according to the target molecules and specific expanded bed systems.Many types of supporting matrices for expanded bed adsorbents have been developed,and their preparation methods are being consummated gradually.These matrices are activated and then coupled with ligands to form functionalized adsorbents,including ion-exchange adsorbents,affinity adsorbents,mixed mode adsorbents,hydrophobic charge induction chromatography adsorbents and others.In this review,the preparation of the matrices for EBA process is summa-rized,and the coupling of ligands to the matrices to prepare functionalized adsorbents is discussed as well.展开更多
According to the new structure of the jet flotation column, a system which can measure and control the parameters of the column flotation system is successfully designed.
To make magnetic separator more excellent in beneficiation, an advanced automatic control system for magnetic separator was designed. This paper designs automatic control system for magnetic separators, combination wi...To make magnetic separator more excellent in beneficiation, an advanced automatic control system for magnetic separator was designed. This paper designs automatic control system for magnetic separators, combination with PLC and technology of vary frequency. This system can wholly supervise and control the parameters of work course of magnetic separators.展开更多
基金Supported by the National Key R&D Program of China(2017YFB0603702)the Natural Science Foundation of Zhejiang Province(Y15E060014)+1 种基金the National Natural Science Foundation of China(51636007)Shanghai Young Teachers Development Program(10-16-301-801)
文摘Due to the increasing global demand for industrial gas, the development of large-scale cryogenic air separation systems has attracted considerable attention in recent years. Increasing the height of the adsorption bed in a vertical radial flow adsorber used in cryogenic air separation systems may efficiently increase the treatment capacity of the air in the adsorber. However, uniformity of the flow distribution of the air inside the adsorber would be deteriorated using the height-increasing method. In order to reduce the non-uniformity of the flow distribution caused by the excessive height of adsorption bed in a vertical radial flow adsorber, a novel parallel connection method is proposed in the present work. The experimental apparatus is designed and constructed; the Computational Fluid Dynamics(CFD) technique is used to develop a CFD-based model, which is used to analyze the flow distribution, the static pressure drop and the radial velocity in the newly designed adsorber. In addition, the geometric parameters of annular flow channels and the adsorption bed thickness of the upper unit in the parallelconnected vertical radial flow adsorber are optimized, so that the upper and lower adsorption units could be penetrated by air simultaneously. Comparisons are made between the height-increasing method and the parallel connection method with the same adsorber height. It is shown that using the parallel connection method could reduce the difference between the maximum and minimum radial static pressure drop by 86.2% and improve the uniformity by 80% compared with those of using the height-increasing method. The optimal thickness ratio of the upper and lower adsorption units is obtained as 0.966, in which case the upper and lower adsorption units could be penetrated by air simultaneously, so that the adsorbents in adsorption space could be used more efficiently.
基金Supported by the National Natural Science Foundation of China (20876139, 20776129) and the National Basic Research Program of China (2007CB707805).
文摘Expanded bed adsorption(EBA),a promising and practical separation technique,has been widely studied in the past two decades.The development of adsorbents for EBA process is a challenging course,with the special design and preparation according to the target molecules and specific expanded bed systems.Many types of supporting matrices for expanded bed adsorbents have been developed,and their preparation methods are being consummated gradually.These matrices are activated and then coupled with ligands to form functionalized adsorbents,including ion-exchange adsorbents,affinity adsorbents,mixed mode adsorbents,hydrophobic charge induction chromatography adsorbents and others.In this review,the preparation of the matrices for EBA process is summa-rized,and the coupling of ligands to the matrices to prepare functionalized adsorbents is discussed as well.
文摘According to the new structure of the jet flotation column, a system which can measure and control the parameters of the column flotation system is successfully designed.
文摘To make magnetic separator more excellent in beneficiation, an advanced automatic control system for magnetic separator was designed. This paper designs automatic control system for magnetic separators, combination with PLC and technology of vary frequency. This system can wholly supervise and control the parameters of work course of magnetic separators.